Yi-Guang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2211070/publications.pdf

Version: 2024-02-01

567281 526287 28 971 15 27 citations h-index g-index papers 28 28 28 1790 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Autoreactive CD8 T cells in NOD mice exhibit phenotypic heterogeneity but restricted TCR gene usage. Life Science Alliance, 2022, 5, e202201503.	2.8	2
2	Characterization of Type I Interferon-Associated Chemokines and Cytokines in Lacrimal Glands of Nonobese Diabetic Mice. International Journal of Molecular Sciences, 2021, 22, 3767.	4.1	7
3	Self-Renewing Islet TCF1+ CD8 T Cells Undergo IL-27–Controlled Differentiation to Become TCF1â^' Terminal Effectors during the Progression of Type 1 Diabetes. Journal of Immunology, 2021, 207, 1990-2004.	0.8	15
4	Single-cell lineage mapping of a diverse virus-specific naive CD4 T cell repertoire. Journal of Experimental Medicine, 2021, 218, .	8.5	46
5	CD226 Deletion Reduces Type 1 Diabetes in the NOD Mouse by Impairing Thymocyte Development and Peripheral T Cell Activation. Frontiers in Immunology, 2020, 11, 2180.	4.8	21
6	UBASH3A deficiency accelerates type 1 diabetes development and enhances salivary gland inflammation in NOD mice. Scientific Reports, 2020, 10, 12019.	3.3	11
7	Toll-Like Receptor 7 Is Required for Lacrimal Gland Autoimmunity and Type 1 Diabetes Development in Male Nonobese Diabetic Mice. International Journal of Molecular Sciences, 2020, 21, 9478.	4.1	11
8	The CD137 Ligand Is Important for Type 1 Diabetes Development but Dispensable for the Homeostasis of Disease-Suppressive CD137+ FOXP3+ Regulatory CD4 T Cells. Journal of Immunology, 2020, 204, 2887-2899.	0.8	7
9	Beta Cell Dedifferentiation Induced by IRE1α Deletion Prevents Type 1 Diabetes. Cell Metabolism, 2020, 31, 822-836.e5.	16.2	84
10	Combined congenic mapping and nuclease-based gene targeting for studying allele-specific effects of Tnfrsf9 within the Idd9.3 autoimmune diabetes locus. Scientific Reports, 2019, 9, 4316.	3.3	9
11	CD11c+ Cells Are Gatekeepers for Lymphocyte Trafficking to Infiltrated Islets During Type 1 Diabetes. Frontiers in Immunology, 2019, 10, 99.	4.8	21
12	Interleukin-27 Is Essential for Type 1 Diabetes Development and Sjögren Syndrome-like Inflammation. Cell Reports, 2019, 29, 3073-3086.e5.	6.4	32
13	Soluble CD137 Ameliorates Acute Type 1 Diabetes by Inducing T Cell Anergy. Frontiers in Immunology, 2019, 10, 2566.	4.8	14
14	Improved Murine MHC-Deficient HLA Transgenic NOD Mouse Models for Type 1 Diabetes Therapy Development. Diabetes, 2018, 67, 923-935.	0.6	11
15	The Role of NOD Mice in Type 1 Diabetes Research: Lessons from the Past and Recommendations for the Future. Frontiers in Endocrinology, 2018, 9, 51.	3.5	99
16	A Hypermorphic <i>Nfkbid</i> Allele Contributes to Impaired Thymic Deletion of Autoreactive Diabetogenic CD8+ T Cells in NOD Mice. Journal of Immunology, 2018, 201, 1907-1917.	0.8	21
17	CD137 Plays Both Pathogenic and Protective Roles in Type 1 Diabetes Development in NOD Mice. Journal of Immunology, 2017, 198, 3857-3868.	0.8	21
18	Interferon-Î ³ Limits Diabetogenic CD8+ T-Cell Effector Responses in Type 1 Diabetes. Diabetes, 2017, 66, 710-721.	0.6	26

#	Article	IF	CITATIONS
19	Congenic mapping identifies a novel Idd9 subregion regulating type 1 diabetes in NOD mice. Immunogenetics, 2017 , 69 , $193-198$.	2.4	2
20	Repeated Activation of Lung Invariant NKT Cells Results in Chronic Obstructive Pulmonary Disease-Like Symptoms. PLoS ONE, 2016, 11, e0147710.	2.5	12
21	Interleukin†antagonism moderates the inflammatory state associated with Type 1 diabetes during clinical trials conducted at disease onset. European Journal of Immunology, 2016, 46, 1030-1046.	2.9	54
22	Homeostasis of IL-15 dependent lymphocyte subsets in the liver. Cytokine, 2016, 82, 95-101.	3.2	20
23	Interleukin-15-mediated inflammation promotes non-alcoholic fatty liver disease. Cytokine, 2016, 82, 102-111.	3.2	53
24	Blood-based signatures in type 1 diabetes. Diabetologia, 2016, 59, 414-425.	6.3	48
25	Efficient CRISPR/Cas9-Mediated Genome Editing in Mice by Zygote Electroporation of Nuclease. Genetics, 2015, 200, 423-430.	2.9	231
26	The Presence and Preferential Activation of Regulatory T Cells Diminish Adoptive Transfer of Autoimmune Diabetes by Polyclonal Nonobese Diabetic (NOD) T Cell Effectors into NSG versus NOD- <i>scid</i> Mice. Journal of Immunology, 2015, 195, 3011-3019.	0.8	14
27	Gene Targeting in NOD Mouse Embryos Using Zinc-Finger Nucleases. Diabetes, 2014, 63, 68-74.	0.6	24
28	Molecular Signatures Differentiate Immune States in Type 1 Diabetic Families. Diabetes, 2014, 63, 3960-3973.	0.6	55