Cassandra L Quave

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2210521/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Development of Culinary and Self-Care Programs in Diverse Settings: Theoretical Considerations and Available Evidence. American Journal of Lifestyle Medicine, 2022, 16, 672-683.	1.9	3
2	Biofilm Production by Uropathogens in Postmenopausal Women with Recurrent and Isolated Urinary Tract Infection. Female Pelvic Medicine and Reconstructive Surgery, 2022, 28, e127-e132.	1.1	2
3	The genus Rudbeckia: A critical review of its traditional medicinal uses, phytochemistry, and pharmacology. Journal of Herbal Medicine, 2022, 31, 100530.	2.0	1
4	Medicinal plants in the Balkans with antimicrobial properties. , 2022, , 103-138.		1
5	Synthesis, Stereochemical Confirmation, and Derivatization of 12(<i>S</i>) Tj ETQq1 1 0.784314 rgBT /Overloo <i>Staphylococcus aureus</i> to Î²â€Łactam Antibiotics. Angewandte Chemie, 2022, 134, .	k 10 Tf 50 2.0) 587 Td (),16 3
6	Synthesis, Stereochemical Confirmation, and Derivatization of 12(<i>S</i>),16ïµâ€Dihydroxyclerodaâ€3,13â€dienâ€15,16â€olide, a Clerodane Diterpene That Sensitizes Methicillinâ€Resistant <i>Staphylococcus aureus</i> to βâ€Lactam Antibiotics. Angewandte Chemie - International Edition, 2022, 61, .	13.8	7
7	Mammea B/BA Isolated From the Seeds of Mammea americana L. (Calophyllaceae) is a Potent Inhibitor of Methicillin-Resistant Staphylococcus aureus. Frontiers in Pharmacology, 2022, 13, 826404.	3.5	2
8	Machine Learning Approaches to Identify Discriminative Signatures of Volatile Organic Compounds (VOCs) from Bacteria and Fungi Using SPME-DART-MS. Metabolites, 2022, 12, 232.	2.9	11
9	Identification of Botanical Viral Entry Inhibitors for SARS oVâ€2. FASEB Journal, 2022, 36, .	0.5	0
10	Ethnobotany and the Role of Plant Natural Products in Antibiotic Drug Discovery. Chemical Reviews, 2021, 121, 3495-3560.	47.7	160
11	Ethnobotany of rural and urban Albanians and Serbs in the Anadrini region, Kosovo. Genetic Resources and Crop Evolution, 2021, 68, 1825-1848.	1.6	15
12	Cruciferous vegetables (<i>Brassica oleracea</i>) confer cytoprotective effects in <i>Drosophila</i> intestines. Gut Microbes, 2021, 13, 1-6.	9.8	3
13	An ethnopharmacological survey and comparative analysis of plants from the Sudhnoti District, Azad Jammu and Kashmir, Pakistan. Journal of Ethnobiology and Ethnomedicine, 2021, 17, 14.	2.6	5
14	Castaneroxy A From the Leaves of Castanea sativa Inhibits Virulence in Staphylococcus aureus. Frontiers in Pharmacology, 2021, 12, 640179.	3.5	7
15	Staphylococcal Hemolytic Potential Is Correlated with Increased Severity of Atopic Dermatitis in Children and Young Adults. Journal of Investigative Dermatology, 2021, 141, 1588-1591.	0.7	0
16	Ethnobotany of the Aegadian Islands: safeguarding biocultural refugia in the Mediterranean. Journal of Ethnobiology and Ethnomedicine, 2021, 17, 47.	2.6	12
17	LEGO MINDSTORMS Fraction Collector: A Low-Cost Tool for a Preparative High-Performance Liquid Chromatography System. Analytical Chemistry, 2020, 92, 1687-1690.	6.5	19
18	Antibacterial activity of plant species used for oral health against Porphyromonas gingivalis. PLoS	2.5	25

#	Article	IF	CITATIONS
19	Molecules from nature: Reconciling biodiversity conservation and global healthcare imperatives for sustainable use of medicinal plants and fungi. Plants People Planet, 2020, 2, 463-481.	3.3	88
20	Quantifying synergy in the bioassay-guided fractionation of natural product extracts. PLoS ONE, 2020, 15, e0235723.	2.5	9
21	Pentagalloyl glucose from Schinus terebinthifolia inhibits growth of carbapenem-resistant Acinetobacter baumannii. Scientific Reports, 2020, 10, 15340.	3.3	9
22	Targeting ESKAPE pathogens with anti-infective medicinal plants from the Greater Mpigi region in Uganda. Scientific Reports, 2020, 10, 11935.	3.3	36
23	Triterpenoid acids isolated from Schinus terebinthifolia fruits reduce Staphylococcus aureus virulence and abate dermonecrosis. Scientific Reports, 2020, 10, 8046.	3.3	21
24	Reshaping the future of ethnobiology research after the COVID-19 pandemic. Nature Plants, 2020, 6, 723-730.	9.3	68
25	Phytochemical Study of Eight Medicinal Plants of the Lamiaceae Family Traditionally Used as Tea in the Sharri Mountains Region of the Balkans. Scientific World Journal, The, 2020, 2020, 1-9.	2.1	14
26	A Clerodane Diterpene from <i>Callicarpa americana</i> Resensitizes Methicillin-Resistant <i>Staphylococcus aureus</i> to β-Lactam Antibiotics. ACS Infectious Diseases, 2020, 6, 1667-1673.	3.8	20
27	Medical and food ethnobotany among Albanians and Serbs living in the Shtërpcë/Åtrpce area, South Kosovo. Journal of Herbal Medicine, 2020, 22, 100344.	2.0	27
28	Ethnobotanical study of selected medicinal plants traditionally used in the rural Greater Mpigi region of Uganda. Journal of Ethnopharmacology, 2020, 256, 112742.	4.1	45
29	Prevalence and Therapeutic Challenges of Fungal Drug Resistance: Role for Plants in Drug Discovery. Antibiotics, 2020, 9, 150.	3.7	24
30	A Systematic Review of Plants With Antibacterial Activities: A Taxonomic and Phylogenetic Perspective. Frontiers in Pharmacology, 2020, 11, 586548.	3.5	107
31	Genomic analysis of variability in Delta-toxin levels between <i>Staphylococcus aureus</i> strains. PeerJ, 2020, 8, e8717.	2.0	12
32	A Review of Botanicals Exhibiting Antifungal Activity Against Malassezia spp. Implicated in Common Skin Conditions. Current Dermatology Reports, 2019, 8, 279-296.	2.1	5
33	Growth Inhibitory Activity of Callicarpa americana Leaf Extracts Against Cutibacterium acnes. Frontiers in Pharmacology, 2019, 10, 1206.	3.5	15
34	Characterization and Structural Analysis of Genkwanin, a Natural Product from Callicarpa americana. Crystals, 2019, 9, 491.	2.2	7
35	Peyssonnosides A–B, Unusual Diterpene Glycosides with a Sterically Encumbered Cyclopropane Motif: Structure Elucidation Using an Integrated Spectroscopic and Computational Workflow. Journal of Organic Chemistry, 2019, 84, 8531-8541.	3.2	26
36	American Civil War plant medicines inhibit growth, biofilm formation, and quorum sensing by multidrug-resistant bacteria. Scientific Reports, 2019, 9, 7692.	3.3	27

#	Article	IF	CITATIONS
37	Antibacterial Oligomeric Polyphenols from the Green Alga <i>Cladophora socialis</i> . Journal of Organic Chemistry, 2019, 84, 5035-5045.	3.2	22
38	Validation of a 16th Century Traditional Chinese Medicine Use of Ginkgo biloba as a Topical Antimicrobial. Frontiers in Microbiology, 2019, 10, 775.	3.5	44
39	Antibacterial Activity of Kalanchoe mortagei and K. fedtschenkoi Against ESKAPE Pathogens. Frontiers in Pharmacology, 2019, 10, 67.	3.5	21
40	Altering Perceptions of Scientists among Fifth Graders by the Introduction of Female Role Models: A New Opportunity for Dermatologists?. Journal of Investigative Dermatology, 2019, 139, 723-724.	0.7	2
41	Methods in the Extraction and Chemical Analysis of Medicinal Plants. Springer Protocols, 2019, , 257-283.	0.3	3
42	Bioprospecting for Pharmaceuticals: An Overview and Vision for Future Access and Benefit Sharing. , 2019, , 17-34.		4
43	Medicinal Plants as a Reservoir of New Structures for Anti-infective Compounds. , 2019, , 277-298.		1
44	Targeting Virulence in Staphylococcus aureus by Chemical Inhibition of the Accessory Gene Regulator System <i>In Vivo</i> . MSphere, 2018, 3, .	2.9	64
45	Identification of Staphylococcal Quorum Sensing Inhibitors by Quantification of õ-Hemolysin with High Performance Liquid Chromatography. Methods in Molecular Biology, 2018, 1673, 363-370.	0.9	12
46	Wound Healing with Botanicals: a Review and Future Perspectives. Current Dermatology Reports, 2018, 7, 287-295.	2.1	14
47	Opportunities for plant natural products in infection control. Current Opinion in Microbiology, 2018, 45, 189-194.	5.1	54
48	Antibacterial Properties of Medicinal Plants From Pakistan Against Multidrug-Resistant ESKAPE Pathogens. Frontiers in Pharmacology, 2018, 9, 815.	3.5	41
49	Virulence Inhibitors from Brazilian Peppertree Block Quorum Sensing and Abate Dermonecrosis in Skin Infection Models. Scientific Reports, 2017, 7, 42275.	3.3	62
50	lodinated Meroditerpenes from a Red Alga <i>Callophycus</i> sp Journal of Organic Chemistry, 2017, 82, 4160-4169.	3.2	16
51	Comparative Phytochemical Analysis of Chinese and Bay Starvine (<i>Schisandra</i> spp.): Potential for Development as a New Dietary Supplement Ingredient. Journal of Dietary Supplements, 2017, 14, 640-652.	2.6	5
52	Botanical Complementary and Alternative Medicine for Pruritus: a Systematic Review. Current Dermatology Reports, 2017, 6, 248-255.	2.1	2
53	Ethnophytotechnology: Harnessing the Power of Ethnobotany with Biotechnology. Trends in Biotechnology, 2017, 35, 802-806.	9.3	12
54	352 Medical system distrust and factors that drive disparities in pruritus quality of life among asian americans. Journal of Investigative Dermatology, 2017, 137, S61.	0.7	0

#	Article	IF	CITATIONS
55	Traditional food uses of wild plants among the Gorani of South Kosovo. Appetite, 2017, 108, 83-92.	3.7	32
56	Identification of Ellagic Acid Rhamnoside as a Bioactive Component of a Complex Botanical Extract with Anti-biofilm Activity. Frontiers in Microbiology, 2017, 08, 496.	3.5	34
57	The Chemical and Antibacterial Evaluation of St. John's Wort Oil Macerates Used in Kosovar Traditional Medicine. Frontiers in Microbiology, 2017, 8, 1639.	3.5	46
58	Essential Oil Composition of <i>Pinus peuce</i> Griseb. Needles and Twigs from Two National Parks of Kosovo. Scientific World Journal, The, 2016, 2016, 1-9.	2.1	14
59	Anti-Acne Activity of Italian Medicinal Plants Used for Skin Infection. Frontiers in Pharmacology, 2016, 7, 425.	3.5	21
60	Forty-five years later: The shifting dynamic of traditional ecological knowledge on Pantelleria Island, Italy. Economic Botany, 2016, 70, 380-393.	1.7	17
61	Chemical composition and in vitro antibacterial activity of Pistacia terebinthus essential oils derived from wild populations in Kosovo. BMC Complementary and Alternative Medicine, 2016, 16, 147.	3.7	23
62	509 Discovery of plants and fungi with antibacterial activity against Propionibacterium acnes. Journal of Investigative Dermatology, 2016, 136, S90.	0.7	0
63	Ethnoveterinary practices of Covasna County, Transylvania, Romania. Journal of Ethnobiology and Ethnomedicine, 2015, 11, 35.	2.6	34
64	A cross-cultural comparison of folk plant uses among Albanians, Bosniaks, Gorani and Turks living in south Kosovo. Journal of Ethnobiology and Ethnomedicine, 2015, 11, 39.	2.6	69
65	Chemical Composition of <i>Juniperus communis</i> L. Cone Essential Oil and Its Variability among Wild Populations in Kosovo. Chemistry and Biodiversity, 2015, 12, 1706-1717.	2.1	19
66	An ethnobotanical perspective on traditional fermented plant foods and beverages in Eastern Europe. Journal of Ethnopharmacology, 2015, 170, 284-296.	4.1	88
67	Essential oil composition variability among natural populations of Pinus mugo Turra in Kosovo. SpringerPlus, 2015, 4, 828.	1.2	15
68	A reservoir of ethnobotanical knowledge informs resilient food security and health strategies in the Balkans. Nature Plants, 2015, 1, 14021.	9.3	118
69	Castanea sativa (European Chestnut) Leaf Extracts Rich in Ursene and Oleanene Derivatives Block Staphylococcus aureus Virulence and Pathogenesis without Detectable Resistance. PLoS ONE, 2015, 10, e0136486.	2.5	92
70	The Open Science Network in Ethnobiology: Growing the Influence of Ethnobiology. Ethnobiology Letters, 2015, 6, 1-4.	0.5	1
71	220D-F2 from Rubus ulmifolius Kills Streptococcus pneumoniae Planktonic Cells and Pneumococcal Biofilms. PLoS ONE, 2014, 9, e97314.	2.5	19
72	Flipping the switch: tools for detecting small molecule inhibitors of staphylococcal virulence. Frontiers in Microbiology, 2014, 5, 706.	3.5	45

#	Article	IF	CITATIONS
73	The uses of Betula pendula Roth among Hungarian Csángós and Székelys in Transylvania, Romania. Acta Societatis Botanicorum Poloniae, 2014, 83, 113-122.	0.8	18

75	Fermented Foods for Food Security and Food Sovereignty in the Balkans: A Case Study of the Gorani People of Northeastern Albania. Journal of Ethnobiology, 2014, 34, 28-43.	2.1	47
76	Ethnobotany and Biocultural Diversities in the Balkans. , 2014, , .		22
77	Resilience at the border: traditional botanical knowledge among Macedonians and Albanians living in Gollobordo, Eastern Albania. Journal of Ethnobiology and Ethnomedicine, 2014, 10, 31.	2.6	50
78	Wild Food and Medicinal Plants Used in the Mountainous Albanian North, Northeast, and East: A Comparison. , 2014, , 183-194.		1
79	Linking Student Skill Building with Public Outreach and Education. , 2014, , 291-308.		0
80	Cross-Cultural Ethnobotany of the Sharr Mountains (Northwestern Macedonia). , 2014, , 67-86.		4
81	Ethnobotany in the Balkans: Quo Vadis?. , 2014, , 1-9.		2
82	One century later: the folk botanical knowledge of the last remaining Albanians of the upper Reka Valley, Mount Korab, Western Macedonia. Journal of Ethnobiology and Ethnomedicine, 2013, 9, 22.	2.6	70
83	Plants used for making recreational tea in Europe: a review based on specific research sites. Journal of Ethnobiology and Ethnomedicine, 2013, 9, 58.	2.6	78
84	A comparison of traditional food and health strategies among Taiwanese and Chinese immigrants in Atlanta, Georgia, USA. Journal of Ethnobiology and Ethnomedicine, 2013, 9, 61.	2.6	28
85	Traditional uses of wild food and medicinal plants among Brigasc, Kyé, and Provençal communities on the Western Italian Alps. Genetic Resources and Crop Evolution, 2013, 60, 587-603.	1.6	56
86	Traditional medicinal plant knowledge among Albanians, Macedonians and Gorani in the Sharr Mountains (Republic of Macedonia). Genetic Resources and Crop Evolution, 2013, 60, 2055-2080.	1.6	89
87	Mediterranean Zootherapy: A Historical to Modern Perspective. , 2013, , 303-316.		6
88	Botanical ethnoveterinary therapies in three districts of the Lesser Himalayas of Pakistan. Journal of Ethnobiology and Ethnomedicine, 2013, 9, 84.	2.6	105
89	The European Heritage of Folk Medicines and Medicinal Foods: Its Contribution to the CAMs of Tomorrow. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-2.	1.2	6
90	Comparative Medical Ethnobotany of the Senegalese Community Living in Turin (Northwestern Italy) and in Adeane (Southern Senegal). Evidence-based Complementary and Alternative Medicine, 2012, 2012, 1-30.	1.2	27

#	Article	IF	CITATIONS
91	Medical Ethnobotany in Europe: From Field Ethnography to a More Culturally Sensitive Evidence-Based CAM?. Evidence-based Complementary and Alternative Medicine, 2012, 2012, 1-17.	1.2	52
92	Quercus cerris extracts limit Staphylococcus aureus biofilm formation. Journal of Ethnopharmacology, 2012, 144, 812-815.	4.1	24
93	Traditional food and herbal uses of wild plants in the ancient South-Slavic diaspora of Mundimitar/Montemitro (Southern Italy). Journal of Ethnobiology and Ethnomedicine, 2012, 8, 21.	2.6	63
94	Ellagic Acid Derivatives from Rubus ulmifolius Inhibit Staphylococcus aureus Biofilm Formation and Improve Response to Antibiotics. PLoS ONE, 2012, 7, e28737.	2.5	148
95	An ethnobotanical survey of the Gollak region, Kosovo. Genetic Resources and Crop Evolution, 2012, 59, 739-754.	1.6	77
96	"We Are Italians!― The Hybrid Ethnobotany of a Venetian Diaspora in Eastern Romania. Human Ecology, 2012, 40, 435-451.	1.4	47
97	Medical ethnobotany of the Albanian Alps in Kosovo. Journal of Ethnobiology and Ethnomedicine, 2012, 8, 6.	2.6	115
98	Ethnobotanical clues for the discovery of natural product mediators of microbial pathogenesis. Planta Medica, 2012, 78, .	1.3	0
99	Quorum Sensing Inhibitors of <i>Staphylococcus aureus</i> from Italian Medicinal Plants. Planta Medica, 2011, 77, 188-195.	1.3	46
100	Sesquiterpene lactones from Gynoxys verrucosa and their anti-MRSA activity. Journal of Ethnopharmacology, 2011, 137, 1055-1059.	4.1	28
101	Cross-Cultural Ethnobiology in the Western Balkans: Medical Ethnobotany and Ethnozoology Among Albanians and Serbs in the PeÅ _i ter Plateau, Sandžak, South-Western Serbia. Human Ecology, 2011, 39, 333-349.	1.4	123
102	A Comparative Assessment of Zootherapeutic Remedies from Selected Areas in Albania, Italy, Spain and Nepal. Journal of Ethnobiology, 2010, 30, 92-125.	2.1	51
103	The use of medicinal plants in the trans-himalayan arid zone of Mustang district, Nepal. Journal of Ethnobiology and Ethnomedicine, 2010, 6, 14.	2.6	121
104	Dermatological remedies in the traditional pharmacopoeia of Vulture-Alto Bradano, inland southern Italy. Journal of Ethnobiology and Ethnomedicine, 2008, 4, 5.	2.6	62
105	Effects of extracts from Italian medicinal plants on planktonic growth, biofilm formation and adherence of methicillin-resistant Staphylococcus aureus. Journal of Ethnopharmacology, 2008, 118, 418-428.	4.1	243
106	Traditional pharmacopoeias and medicines among Albanians and Italians in southern Italy: A comparison. Journal of Ethnopharmacology, 2005, 101, 258-270.	4.1	185
107	Ethnopharmacognostic survey on the natural ingredients used in folk cosmetics, cosmeceuticals and remedies for healing skin diseases in the inland Marches, Central-Eastern Italy. Journal of Ethnopharmacology, 2004, 91, 331-344.	4.1	164
108	Folk pharmaceutical knowledge in the territory of the Dolomiti Lucane, inland southern Italy. Journal of Ethnopharmacology, 2004, 95, 373-384.	4.1	169

#	Article	IF	CITATIONS
109	Ethnopharmacology of liakra : traditional weedy vegetables of the Arbëreshë of the Vulture area in southern Italy. Journal of Ethnopharmacology, 2002, 81, 165-185.	4.1	232
110	Ethnopharmacy of the ethnic Albanians (Arbëreshë) of northern Basilicata, Italy. Fìtoterapìâ, 2002, 73, 217-241.	2.2	124
111	The Four-Sided Triangle of Ethics in Bioprospecting: Pharmaceutical Business, International Politics, Socio-Environmental Responsibility and the Importance of Local Stakeholders. Ethnobiology and Conservation, 0, 1, .	0.0	5
112	Ethnomedical Knowledge among Slavic Speaking People in South Kosovo. Ethnobiology and Conservation, 0, , .	0.0	9