Virginie Lafont

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2208927/publications.pdf

Version: 2024-02-01

40 papers

1,317 citations

³⁹⁴⁴²¹ 19 h-index 35 g-index

40 all docs 40 docs citations

times ranked

40

1742 citing authors

#	Article	IF	CITATIONS
1	Clinicopathological Correlates of $\hat{I}^3\hat{I}$ T Cell Infiltration in Triple-Negative Breast Cancer. Cancers, 2021, 13, 765.	3.7	13
2	Editorial: Novel Strategies for Cancer Immunotherapy: Targeting Immune-Mediated Suppressive Mechanisms. Frontiers in Immunology, 2021, 12, 691899.	4.8	O
3	Pro-tumor $\hat{I}^3\hat{I}'$ T Cells in Human Cancer: Polarization, Mechanisms of Action, and Implications for Therapy. Frontiers in Immunology, 2020, 11, 2186.	4.8	29
4	Identification of a regulatory \hat{V} 1 gamma delta T cell subpopulation expressing CD73 in human breast cancer. Journal of Leukocyte Biology, 2020, 107, 1057-1067.	3.3	27
5	Diversity of Tumor-Infiltrating, î³î´T-Cell Abundance in Solid Cancers. Cells, 2020, 9, 1537.	4.1	30
6	IL-21 Signaling in the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1240, 73-82.	1.6	10
7	IL-21 promotes the development of a CD73-positive $\hat{V}^39\hat{V}^2$ T cell regulatory population. Oncolmmunology, 2018, 7, e1379642.	4.6	24
8	CD73: a new biomarker in triple-negative breast cancer. Translational Cancer Research, 2018, 7, S594-S596.	1.0	4
9	PD-1 blockade at the time of tumor escape potentiates the immune-mediated antitumor effects of a melanoma-targeting monoclonal antibody. Oncolmmunology, 2017, 6, e1353857.	4.6	14
10	Tumor antigen-targeting monoclonal antibody-based immunotherapy: Orchestrating combined strategies for the development of long-term antitumor immunity. Oncolmmunology, 2014, 3, e955684.	4.6	44
11	Plasticity of γδT Cells: Impact on the Anti-Tumor Response. Frontiers in Immunology, 2014, 5, 622.	4.8	122
12	Full Restoration of Brucella-Infected Dendritic Cell Functionality through VÎ ³ 9VÎ ² T Helper Type 1 Crosstalk. PLoS ONE, 2012, 7, e43613.	2.5	13
13	Role of NKG2D and its ligands in the antiâ€infectious activity of Vγ9VÎ^2 T cells against intracellular bacteria. European Journal of Immunology, 2011, 41, 1619-1628.	2.9	21
14	The New Species < i>Brucella microti < /i> Replicates in Macrophages and Causes Death in Murine Models of Infection. Journal of Infectious Diseases, 2010, 202, 3-10.	4.0	71
15	Human CD4 ⁺ invariant NKT cells are involved in antibacterial immunity against <i>Brucella suis</i> through CD1dâ€dependent but CD4â€independent mechanisms. European Journal of Immunology, 2009, 39, 1025-1035.	2.9	18
16	The IFNÎ ³ -induced STAT1-CBP/P300 association, required for a normal response to the cytokine, is disrupted in Brucella-infected macrophages. Microbial Pathogenesis, 2009, 46, 88-97.	2.9	20
17	Differential Role of Autophagy in CD4 T Cells and Macrophages during X4 and R5 HIV-1 Infection. PLoS ONE, 2009, 4, e5787.	2.5	115
18	IL-2 triggers specific signaling pathways in human NKT cells leading to the production of pro- and anti-inflammatory cytokines. Journal of Leukocyte Biology, 2008, 84, 224-233.	3.3	39

#	Article	IF	CITATIONS
19	Identification and Isolation of <i>Brucella suis</i> Virulence Genes Involved in Resistance to the Human Innate Immune System. Infection and Immunity, 2007, 75, 5167-5174.	2.2	3
20	Impairment of TNF-α Production and Action by Imidazo[1,2-α] Quinoxalines, as Derivative Family Which Displays Potential Anti-Inflammatory Properties. International Journal of Immunopathology and Pharmacology, 2006, 19, 525-538.	2.1	12
21	Release of LL-37 by Activated Human VÎ ³ 9VÎ ² T Cells: A Microbicidal Weapon against <i>Brucella suis</i> Journal of Immunology, 2006, 177, 5533-5539.	0.8	44
22	$\hat{V}^{39}\hat{V}^{2}$ T cells use a combination of mechanisms to limit the spread of the pathogenic bacteria Brucella. Journal of Leukocyte Biology, 2005, 77, 652-660.	3.3	36
23	Impairment of Intramacrophagic Brucella suis Multiplication by Human Natural Killer Cells through a Contact-Dependent Mechanism. Infection and Immunity, 2004, 72, 2303-2311.	2.2	24
24	Specific Signaling Pathways Triggered by IL-2 in Human $V\hat{l}^39V\hat{l}^2$ T Cells: An Amalgamation of NK and $\hat{l}\pm\hat{l}^2$ T Cell Signaling. Journal of Immunology, 2003, 171, 5225-5232.	0.8	18
25	Isopentenyl Pyrophosphate, a Mycobacterial Non-peptidic Antigen, Triggers Delayed and Highly Sustained Signaling in Human Î ³ δT Lymphocytes without Inducing Down-modulation of T Cell Antigen Receptor. Journal of Biological Chemistry, 2001, 276, 15961-15967.	3.4	48
26	Production of TNF-α by Human Vγ9Vδ2 T Cells Via Engagement of FcγRIIIA, the Low Affinity Type 3 Receptor for the Fc Portion of IgG, Expressed upon TCR Activation by Nonpeptidic Antigen. Journal of Immunology, 2001, 166, 7190-7199.	0.8	90
27	Antigen receptor signal transduction: activating and inhibitory antigen receptors regulate STAT1 serine phosphorylation. European Journal of Immunology, 2000, 30, 1851-1860.	2.9	18
28	Tumor Necrosis Factor- \hat{l}_{\pm} Production Is Differently Regulated in $\hat{l}_{3}\hat{l}'$ and $\hat{l}_{\pm}\hat{l}^{2}$ Human T Lymphocytes. Journal of Biological Chemistry, 2000, 275, 19282-19287.	3.4	33
29	The T cell antigen receptor activates phosphatidylinositol 3-kinase-regulated serine kinases protein kinase B and ribosomal S6 kinase 1. FEBS Letters, 2000, 486, 38-42.	2.8	35
30	Evidence for a p21 /Raf-1/MEK-1/ERK-2-independent Pathway in Stimulation of IL-2 Gene Transcription in Human Primary T Lymphocytes. Journal of Biological Chemistry, 1999, 274, 25743-25748.	3.4	9
31	Inhibition of HIV Infection by Lectin Binding to CD4. , 1998, 9, 539-554.		0
32	Effector pathways regulating T cell activation. Biochemical Pharmacology, 1998, 56, 1539-1547.	4.4	31
33	The Raf-1/Mitogen-Activated Protein Kinase Kinase-1/Extracellular Signal-Regulated-2 Signaling Pathway as Prerequisite for Interleukin-2 Gene Transcription in Lectin-Stimulated Human Primary T Lymphocytes. Biochemical Pharmacology, 1998, 55, 319-324.	4.4	13
34	Transferrin Receptor Functions as a Signal-Transduction Molecule for its Own Recycling Via Increases in the Internal Ca2 Concentration. FEBS Journal, 1997, 250, 689-697.	0.2	18
35	The Lectin Jacalin Specifically Triggers Cell Signaling in CD4+T Lymphocytes. Cellular Immunology, 1997, 181, 23-29.	3.0	11
36	Evidence for a CD4-associated calcium influx independent of the phosphoinositide transduction pathway in human T cells. European Journal of Immunology, 1997, 27, 2261-2268.	2.9	3

#	Article	lF	CITATION
37	Interaction of Yersinia enterocolitica with macrophages leads to macrophage cell death through apoptosis. Infection and Immunity, 1997, 65, 4813-4821.	2.2	204
38	The lectin jacalin triggers CD4-mediated lymphocyte signaling by binding CD4 through a protein-protein interaction. Journal of Leukocyte Biology, 1996, 59, 691-696.	3.3	25
39	Jacalin, a lectin that inhibits in vitro HIV-1 infection, induces intracellular calcium increase via CD4 in cells lacking the CD3/TcR complex. Journal of Leukocyte Biology, 1994, 56, 521-524.	3.3	19
40	Perturbation of in vitro HIV pathogenic effects by peptides showing sequence similarities with the C2 conserved domain of gp120. Immunology Letters, 1993, 37, 249-250.	2.5	9