Serge Nef

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/220873/publications.pdf

Version: 2024-02-01

135	10,227	51	97
papers	citations	h-index	g-index
150	150	150	12406
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Loss of NEDD4 causes complete XY gonadal sex reversal in mice. Cell Death and Disease, 2022, 13, 75.	6.3	2
2	Single-cell transcriptomics identifies potential cells of origin of MYC rhabdoid tumors. Nature Communications, 2022, 13, 1544.	12.8	9
3	Combined Use of Whole Exome Sequencing and CRISPR/Cas9 to Study the Etiology of Non-Obstructive Azoospermia: Demonstration of the Dispensable Role of the Testis-Specific Genes Clorf185 and CCT6B. Cells, 2022, 11, 118.	4.1	1
4	Oligogenic heterozygous inheritance of sperm abnormalities in mouse. ELife, 2022, 11, .	6.0	12
5	Origin, specification and differentiation of a rare supporting-like lineage in the developing mouse gonad. Science Advances, 2022, 8, .	10.3	32
6	ATRT-15. Primordial germ cells identified as one potential cell of origin of MYC rhabdoid tumors. Neuro-Oncology, 2022, 24, i6-i6.	1.2	0
7	Deciphering the origins and fates of steroidogenic lineages in the mouse testis. Cell Reports, 2022, 39, 110935.	6.4	11
8	Deficiency in insulinâ€like growth factors signalling in mouse Leydig cells increase conversion of testosterone to estradiol because of feminization. Acta Physiologica, 2021, 231, e13563.	3.8	5
9	Maternal occupational exposure to endocrine-disrupting chemicals during pregnancy and semen parameters in adulthood: results of a nationwide cross-sectional study among Swiss conscripts. Human Reproduction, 2021, 36, 1948-1958.	0.9	16
10	Singleâ€cell transcriptomics reveal temporal dynamics of critical regulators of germ cell fate during mouse sex determination. FASEB Journal, 2021, 35, e21452.	0.5	36
11	Specific Transcriptomic Signatures and Dual Regulation of Steroidogenesis Between Fetal and Adult Mouse Leydig Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 695546.	3.7	19
12	O-228 The SSRI antidepressant Sertraline inhibits CatSper calcium channels in human sperm. Human Reproduction, 2021, 36, .	0.9	0
13	The antidepressant Sertraline inhibits CatSper Ca2+ channels in human sperm. Human Reproduction, 2021, 36, 2638-2648.	0.9	15
14	A Novel WT1 Mutation Identified in a 46,XX Testicular/Ovotesticular DSD Patient Results in the Retention of Intron 9. Biology, 2021, 10, 1248.	2.8	8
15	Pathogenic variants in the DEAH-box RNA helicase DHX37 are a frequent cause of 46,XY gonadal dysgenesis and 46,XY testicular regression syndrome. Genetics in Medicine, 2020, 22, 150-159.	2.4	34
16	Steroid profile analysis by LC-HRMS in human seminal fluid. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1136, 121929.	2.3	13
17	Genetic Ablation of MiR-22 Fosters Diet-Induced Obesity and NAFLD Development. Journal of Personalized Medicine, 2020, 10, 170.	2.5	21
18	The FKBP4 Gene, Encoding a Regulator of the Androgen Receptor Signaling Pathway, Is a Novel Candidate Gene for Androgen Insensitivity Syndrome. International Journal of Molecular Sciences, 2020, 21, 8403.	4.1	6

#	Article	IF	Citations
19	Ablation of the canonical testosterone production pathway via knockout of the steroidogenic enzyme HSD17B3, reveals a novel mechanism of testicular testosterone production. FASEB Journal, 2020, 34, 10373-10386.	0.5	39
20	CatSper: The complex main gate of calcium entry in mammalian spermatozoa. Molecular and Cellular Endocrinology, 2020, 518, 110951.	3.2	40
21	Regional difference in semen quality of young men: a review on the implication of environmental and lifestyle factors during fetal life and adulthood. Basic and Clinical Andrology, 2020, 30, 16.	1.9	13
22	Protection Against XY Gonadal Sex Reversal by a Variant Region on Mouse Chromosome 13. Genetics, 2020, 214, 467-477.	2.9	6
23	Semen endocannabinoids are correlated to sperm quality in a cohort of 200 young Swiss men. Andrology, 2020, 8, 1126-1135.	3.5	11
24	Pantoprazole, a protonâ€pump inhibitor, impairs human sperm motility and capacitation in vitro. Andrology, 2020, 8, 1795-1804.	3.5	9
25	The gene encoding the ketogenic enzyme HMGCS2 displays a unique expression during gonad development in mice. PLoS ONE, 2020, 15, e0227411.	2.5	12
26	Meiosis occurs normally in the fetal ovary of mice lacking all retinoic acid receptors. Science Advances, 2020, 6, .	10.3	41
27	Retinoic acid synthesis by ALDH1A proteins is dispensable for meiosis initiation in the mouse fetal ovary. Science Advances, 2020, 6, eaaz1261.	10.3	29
28	Insulin/IGF1 signaling regulates the mitochondrial biogenesis markers in steroidogenic cells of prepubertal testis, but not ovaryâ€. Biology of Reproduction, 2019, 100, 253-267.	2.7	14
29	The Insulin/IGF System in Mammalian Sexual Development and Reproduction. International Journal of Molecular Sciences, 2019, 20, 4440.	4.1	47
30	The ReproGenomics Viewer: a multi-omics and cross-species resource compatible with single-cell studies for the reproductive science community. Bioinformatics, 2019, 35, 3133-3139.	4.1	49
31	Tumor Suppressor PTEN Regulates Negatively Sertoli Cell Proliferation, Testis Size, and Sperm Production In Vivo. Endocrinology, 2019, 160, 387-398.	2.8	20
32	Bi-allelic Mutations in ARMC2 Lead to Severe Astheno-Teratozoospermia Due to Sperm Flagellum Malformations in Humans and Mice. American Journal of Human Genetics, 2019, 104, 331-340.	6.2	113
33	Genetic resistance to DEHP-induced transgenerational endocrine disruption. PLoS ONE, 2019, 14, e0208371.	2.5	18
34	Semen quality of young men in Switzerland: a nationwide crossâ€sectional populationâ€based study. Andrology, 2019, 7, 818-826.	3.5	30
35	Dissecting Cell Lineage Specification and Sex Fate Determination in Gonadal Somatic Cells Using Single-Cell Transcriptomics. Cell Reports, 2019, 26, 3272-3283.e3.	6.4	137
36	Genetic Control of Gonadal Sex Determination and Development. Trends in Genetics, 2019, 35, 346-358.	6.7	72

#	Article	IF	CITATIONS
37	Characterizing the bipotential mammalian gonad. Current Topics in Developmental Biology, 2019, 134, 167-194.	2.2	63
38	Creation of knock out and knock in mice by CRISPR/Cas9 to validate candidate genes for human male infertility, interest, difficulties and feasibility. Molecular and Cellular Endocrinology, 2018, 468, 70-80.	3.2	24
39	$\langle \text{scp}\rangle\text{PATL}\langle \text{scp}\rangle$ 2 is a key actor of oocyte maturation whose invalidation causes infertility in women and mice. EMBO Molecular Medicine, 2018, 10, .	6.9	53
40	A brief history of sex determination. Molecular and Cellular Endocrinology, 2018, 468, 3-10.	3.2	20
41	Mutations in CFAP43 and CFAP44 cause male infertility and flagellum defects in Trypanosoma and human. Nature Communications, 2018, 9, 686.	12.8	173
42	Single cell transcriptome sequencing: A new approach for the study of mammalian sex determination. Molecular and Cellular Endocrinology, 2018, 468, 11-18.	3.2	19
43	Deciphering Cell Lineage Specification during Male Sex Determination with Single-Cell RNA Sequencing. Cell Reports, 2018, 22, 1589-1599.	6.4	126
44	Steroid profiles in both blood serum and seminal plasma are not correlated and do not reflect sperm quality: Study on the male reproductive health of fifty young Swiss men. Clinical Biochemistry, 2018, 62, 39-46.	1.9	16
45	ZNRF3 functions in mammalian sex determination by inhibiting canonical WNT signaling. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5474-5479.	7.1	62
46	The impact of new technologies in our understanding of testis formation and function. Molecular and Cellular Endocrinology, 2018, 468, 1-2.	3.2	0
47	Insulin and IGF1 receptors are essential for the development and steroidogenic function of adult Leydig cells. FASEB Journal, 2018, 32, 3321-3335.	0.5	31
48	NRG1 signalling regulates the establishment of Sertoli cell stock in the mouse testis. Molecular and Cellular Endocrinology, 2018, 478, 17-31.	3.2	4
49	A Case of Two Sisters Suffering from 46,XY Gonadal Dysgenesis and Carrying a Mutation of a Novel Candidate Sex-Determining Gene <i>STARD8</i> on the X Chromosome. Sexual Development, 2018, 12, 191-195.	2.0	8
50	<scp>SPINK</scp> 2 deficiency causes infertility by inducing sperm defects in heterozygotes and azoospermia inAhomozygotes. EMBO Molecular Medicine, 2017, 9, 1132-1149.	6.9	95
51	Sertoli Cell Number Defines and Predicts Germ and Leydig Cell Population Sizes in the Adult Mouse Testis. Endocrinology, 2017, 158, 2955-2969.	2.8	105
52	Testicular Dysgenesis Syndrome and Long-Lasting Epigenetic Silencing of Mouse Sperm Genes Involved in the Reproductive System after Prenatal Exposure to DEHP. PLoS ONE, 2017, 12, e0170441.	2.5	52
53	MPC1-like Is a Placental Mammal-specific Mitochondrial Pyruvate Carrier Subunit Expressed in Postmeiotic Male Germ Cells. Journal of Biological Chemistry, 2016, 291, 16448-16461.	3.4	30
54	Stress-activated <i>miR-21/miR-21*</i> in hepatocytes promotes lipid and glucose metabolic disorders associated with high-fat diet consumption. Gut, 2016, 65, 1871-1881.	12.1	114

#	Article	IF	Citations
55	Sequential transcriptional waves direct the differentiation of newborn neurons in the mouse neocortex. Science, 2016, 351, 1443-1446.	12.6	264
56	Homozygous mutation of PLCZ1 leads to defective human oocyte activation and infertility that is not rescued by the WW-binding protein PAWP. Human Molecular Genetics, 2016, 25, 878-891.	2.9	112
57	P0956: MIR-22 deficiency exacerbates systemic and hepatic metabolic disorders associated with diet-induced obesity in mice. Journal of Hepatology, 2015, 62, S704.	3.7	0
58	Genes and Gene Defects Affecting Gonad Development and Primary Sex Determinationa +, , 2015, , .		2
59	DICER Regulates the Formation and Maintenance of Cell-Cell Junctions in the Mouse Seminiferous Epithelium1. Biology of Reproduction, 2015, 93, 139.	2.7	27
60	A Case of Wiedemann-Steiner Syndrome Associated with a 46,XY Disorder of Sexual Development and Gonadal Dysgenesis. Sexual Development, 2015, 9, 289-295.	2.0	12
61	Research Resource: The Dynamic Transcriptional Profile of Sertoli Cells During the Progression of Spermatogenesis. Molecular Endocrinology, 2015, 29, 627-642.	3.7	74
62	Autocrine Action of IGF2 Regulates Adult β-Cell Mass and Function. Diabetes, 2015, 64, 4148-4157.	0.6	46
63	Loss of Function Mutation in the Palmitoyl-Transferase HHAT Leads to Syndromic 46,XY Disorder of Sex Development by Impeding Hedgehog Protein Palmitoylation and Signaling. PLoS Genetics, 2014, 10, e1004340.	3.5	63
64	The emerging role of insulin-like growth factors in testis development and function. Basic and Clinical Andrology, 2014, 24, 12.	1.9	75
65	Sertoli cells control peritubular myoid cell fate and support adult Leydig cell development in the prepubertal testis. Development (Cambridge), 2014, 141, 2139-2149.	2.5	110
66	Germ Cell-Specific Targeting of DICER or DGCR8 Reveals a Novel Role for Endo-siRNAs in the Progression of Mammalian Spermatogenesis and Male Fertility. PLoS ONE, 2014, 9, e107023.	2.5	70
67	Cellular Source and Mechanisms of High Transcriptome Complexity in the Mammalian Testis. Cell Reports, 2013, 3, 2179-2190.	6.4	497
68	Use of rodent and human cell culture systems for the investigation of testicular toxicity. Toxicology Letters, 2013, 221, S216.	0.8	2
69	1288 miR-21 DEFICIENCY IMPROVES GLUCOSE TOLERANCE AND HEPATIC LIPID CATABOLISM IN MICE FED A HIGH-FAT DIET. Journal of Hepatology, 2013, 58, S520-S521.	3.7	0
70	An Essential Role for Insulin and IGF1 Receptors in Regulating Sertoli Cell Proliferation, Testis Size, and FSH Action in Mice. Molecular Endocrinology, 2013, 27, 814-827.	3.7	184
71	Insulin and IGF1 Receptors Are Essential for XX and XY Gonadal Differentiation and Adrenal Development in Mice. PLoS Genetics, 2013, 9, e1003160.	3.5	112
72	DNA Methylation Profiling of the Fibrinogen Gene Landscape in Human Cells and during Mouse and Zebrafish Development. PLoS ONE, 2013, 8, e73089.	2.5	9

#	Article	IF	CITATIONS
73	Prevention of Diabetes in db/db Mice by Dietary Soy Is Independent of Isoflavone Levels. Endocrinology, 2012, 153, 5200-5211.	2.8	26
74	The Glucocorticoid-Induced Leucine Zipper (GILZ) Is Essential for Spermatogonial Survival and Spermatogenesis. Sexual Development, 2012, 6, 169-177.	2.0	22
75	Soy, phytoestrogens and their impact on reproductive health. Molecular and Cellular Endocrinology, 2012, 355, 192-200.	3.2	168
76	Short-Term Treatment with Bisphenol-A Leads to Metabolic Abnormalities in Adult Male Mice. PLoS ONE, 2012, 7, e33814.	2.5	150
77	Dicer Is Required for Haploid Male Germ Cell Differentiation in Mice. PLoS ONE, 2011, 6, e24821.	2.5	139
78	Dicer1 Depletion in Male Germ Cells Leads to Infertility Due to Cumulative Meiotic and Spermiogenic Defects. PLoS ONE, 2011, 6, e25241.	2.5	130
79	Hematopoietic prostaglandin D synthase (Hâ€Pgds) is expressed in the early embryonic gonad and participates to the initial nuclear translocation of the SOX9 protein. Developmental Dynamics, 2011, 240, 2335-2343.	1.8	26
80	The liver receptor homolog-1 (LRH-1) is expressed in human islets and protects \hat{l}^2 -cells against stress-induced apoptosis. Human Molecular Genetics, 2011, 20, 2823-2833.	2.9	37
81	Loss of Dicer in Sertoli Cells Has a Major Impact on the Testicular Proteome of Mice. Molecular and Cellular Proteomics, 2011, 10, M900587-MCP200.	3.8	80
82	Beta- and Gamma-Cytoplasmic Actins Are Required for Meiosis in Mouse Oocytes1. Biology of Reproduction, 2011, 85, 1025-1039.	2.7	24
83	Soy, phytoâ€oestrogens and male reproductive function: a review. Journal of Developmental and Physical Disabilities, 2010, 33, 304-316.	3.6	90
84	Loss of <i>Insl3</i> : A Potential Predisposing Factor for Testicular Torsion. Journal of Urology, 2010, 183, 2373-2379.	0.4	24
85	microRNAs in the Testis: Building Up Male Fertility. Journal of Andrology, 2010, 31, 26-33.	2.0	150
86	FSH-stimulated PTEN activity accounts for the lack of FSH mitogenic effect in prepubertal rat Sertoli cells. Molecular and Cellular Endocrinology, 2010, 315, 271-276.	3.2	32
87	Potential detrimental effects of a phytoestrogen-rich diet on male fertility in mice. Molecular and Cellular Endocrinology, 2010, 321, 152-160.	3.2	67
88	The Molecular Chaperone $Hsp90\hat{l}_{\pm}$ Is Required for Meiotic Progression of Spermatocytes beyond Pachytene in the Mouse. PLoS ONE, 2010, 5, e15770.	2.5	139
89	Fetal Programming of Adult Glucose Homeostasis in Mice. PLoS ONE, 2009, 4, e7281.	2.5	20
90	Insulin Receptor and IGF1R Are Not Required for Oocyte Growth, Differentiation, and Maturation in Mice. Sexual Development, 2009, 3, 264-272.	2.0	21

#	Article	IF	Citations
91	Perinatal Exposure to Bisphenol A Alters Early Adipogenesis in the Rat. Environmental Health Perspectives, 2009, 117, 1549-1555.	6.0	382
92	Dcp1-Bodies in Mouse Oocytes. Molecular Biology of the Cell, 2009, 20, 4951-4961.	2.1	50
93	Complementary pathways in mammalian female sex determination. Journal of Biology, 2009, 8, 74.	2.7	31
94	Sertoli cell Dicer is essential for spermatogenesis in mice. Developmental Biology, 2009, 326, 250-259.	2.0	171
95	Soy, phytoestrogens and metabolism: A review. Molecular and Cellular Endocrinology, 2009, 304, 30-42.	3.2	299
96	Special issue on the topic: Role of endocrine disruptors from the environment in the aetiology of obesity and diabetes. Molecular and Cellular Endocrinology, 2009, 304, 1-2.	3.2	4
97	Dietary Phytoestrogens Activate AMP-Activated Protein Kinase With Improvement in Lipid and Glucose Metabolism. Diabetes, 2008, 57, 1176-1185.	0.6	177
98	Diethylstilbestrol Action on Leydig Cell Function and Testicular Descent. Chimia, 2008, 62, 401.	0.6	2
99	Pancreatic Insulin Content Regulation by the Estrogen Receptor ERα. PLoS ONE, 2008, 3, e2069.	2.5	352
100	Estrogen Receptor $\hat{l}\pm$ Is a Major Contributor to Estrogen-Mediated Fetal Testis Dysgenesis and Cryptorchidism. Endocrinology, 2007, 148, 5507-5519.	2.8	96
101	Genetic programs that regulate testicular and ovarian development. Molecular and Cellular Endocrinology, 2007, 265-266, 3-9.	3.2	51
102	Brain-Derived Neurotrophic Factor Conditional Knockouts Show Gender Differences in Depression-Related Behaviors. Biological Psychiatry, 2007, 61, 187-197.	1.3	456
103	A Phytoestrogen-Rich Diet Increases Energy Expenditure and Decreases Adiposity in Mice. Environmental Health Perspectives, 2007, 115, 1467-1473.	6.0	105
104	Expression of Serpinb6 serpins in germ and somatic cells of mouse gonads. Molecular Reproduction and Development, 2006, 73, 9-19.	2.0	18
105	Hormonal Regulation of Male Reproductive Tract Development. Annals of the New York Academy of Sciences, 2005, 1061, 1-8.	3.8	8
106	Prostaglandin D2 induces nuclear import of the sex-determining factor SOX9 via its cAMP-PKA phosphorylation. EMBO Journal, 2005, 24, 1798-1809.	7.8	201
107	TrkB Has a Cell-Autonomous Role in the Establishment of Hippocampal Schaffer Collateral Synapses. Journal of Neuroscience, 2005, 25, 3774-3786.	3.6	146
108	Gene expression during sex determination reveals a robust female genetic program at the onset of ovarian development. Developmental Biology, 2005, 287, 361-377.	2.0	263

#	Article	IF	Citations
109	Induction of enhanced green fluorescent protein expression in response to lesions in the nervous system. Journal of Comparative Neurology, 2004, 474, 108-122.	1.6	6
110	Conditional Deletion of TrkB but Not BDNF Prevents Epileptogenesis in the Kindling Model. Neuron, 2004, 43, 31-42.	8.1	287
111	Altered regulation of brain-derived neurotrophic factor protein in hippocampus following slice preparation. Neuroscience, 2004, 126, 859-869.	2.3	31
112	Testis determination requires insulin receptor family function in mice. Nature, 2003, 426, 291-295.	27.8	250
113	In vivo role of truncated trkb receptors during sensory ganglion neurogenesis. Neuroscience, 2003, 117, 847-858.	2.3	51
114	Emotions are building up in the field of extracellular proteolysis. Trends in Molecular Medicine, 2003, 9, 183-185.	6.7	16
115	The Insulin-3 Gene: Lack of a Genetic Basis for Human Cryptorchidism. Journal of Urology, 2002, 167, 2534-2537.	0.4	53
116	Effects of Orchiopexy on Congenitally Cryptorchid Insulin-3 Knockout Mice. Journal of Urology, 2002, 168, 1779-1783.	0.4	35
117	The Insulin-3 Gene: Lack of a Genetic Basis for Human Cryptorchidism. Journal of Urology, 2002, , 2534-2537.	0.4	4
118	Effects of orchiopexy on congenitally cryptorchid insulin-3 knockout mice. Journal of Urology, 2002, 168, 1779-83; discussion 1783.	0.4	6
119	Neurotrophins Are Not Required for Normal Embryonic Development of Olfactory Neurons. Developmental Biology, 2001, 234, 80-92.	2.0	37
120	LEYDIG INSULIN-LIKE HORMONE, GUBERNACULAR DEVELOPMENT AND TESTICULAR DESCENT. Journal of Urology, 2001, 165 , $1673-1675$.	0.4	53
121	Preserved Pancreatic \hat{i}^2 -Cell Development and Function in Mice Lacking the Insulin Receptor-Related Receptor. Molecular and Cellular Biology, 2001, 21, 5624-5630.	2.3	97
122	LEYDIG INSULIN-LIKE HORMONE, GUBERNACULAR DEVELOPMENT AND TESTICULAR DESCENT. Journal of Urology, $2001, , 1673-1675$.	0.4	1
123	mKlf7, a potential transcriptional regulator of TrkA nerve growth factor receptor expression in sensory and sympathetic neurons. Development (Cambridge), 2001, 128, 1147-1158.	2.5	51
124	Molecular genetics of Insulin3., 2001,, 337-345.		0
125	A Molecular Basis for Estrogen-Induced Cryptorchidism. Developmental Biology, 2000, 224, 354-361.	2.0	176
126	Hormones in male sexual development. Genes and Development, 2000, 14, 3075-3086.	5.9	156

#	Article	IF	CITATION
127	Cryptorchidism in mice mutant for Insl3. Nature Genetics, 1999, 22, 295-299.	21.4	674
128	cpp32 messenger RNA neosynthesis is induced by fatal axotomy and is not regulated by athanatal Bcl-2 over-expression. Neuroscience, 1999, 90, 653-664.	2.3	16
129	Olfaction: Transient expression of a putative odorant receptor in the avian notochord. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 4766-4771.	7.1	41
130	Olfaction in birds: differential embryonic expression of nine putative odorant receptor genes in the avian olfactory system. Mechanisms of Development, 1996, 55, 65-77.	1.7	83
131	Direct modulation of calmodulin targets by the neuronal calcium sensor NCS-1 Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 9253-9258.	7.1	104
132	Regulation of Rhodopsin Phosphorylation by a Family of Neuronal Calcium Sensors. Biochemical and Biophysical Research Communications, 1995, 216, 133-140.	2.1	82
133	Identification of a neuronal calcium sensor (NCS-1) possibly involved in the regulation of receptor phosphorylation. Journal of Receptor and Signal Transduction Research, 1995, 15, 365-378.	2.5	66
134	Cation binding and conformational changes in VILIP and NCS-1, two neuron-specific calcium-binding proteins. Journal of Biological Chemistry, 1994, 269, 32807-13.	3.4	74
135	Acute reduction of Sertoli cell numbers during development leads to a subsequent reduction in sperm numbers in adulthood. Reproduction Abstracts, 0, , .	0.0	0