
Soon-Kwang Hong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2208260/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Agar degradation by microorganisms and agar-degrading enzymes. Applied Microbiology and Biotechnology, 2012, 94, 917-930.	3.6	216
2	Anti-Obesity and Anti-Diabetic Effect of Neoagarooligosaccharides on High-Fat Diet-Induced Obesity in Mice. Marine Drugs, 2017, 15, 90.	4.6	75
3	Overexpression and biochemical characterization of DagA from Streptomyces coelicolor A3(2): an endo-type β-agarase producing neoagarotetraose and neoagarohexaose. Applied Microbiology and Biotechnology, 2011, 92, 749-759.	3.6	67
4	Identification and Biochemical Characterization of Sco3487 from Streptomyces coelicolor A3(2), an Exo- and Endo-Type Â-Agarase-Producing Neoagarobiose. Journal of Bacteriology, 2012, 194, 142-149.	2.2	67
5	Identification of an A-factor-dependent promoter in the streptomycin biosynthetic gene cluster of Streptomyces griseus. Molecular Genetics and Genomics, 1991, 229, 119-128.	2.4	63
6	Cloning, expression, and biochemical characterization of a novel GH16 β-agarase AgaG1 from Alteromonas sp. GNUM-1. Applied Microbiology and Biotechnology, 2014, 98, 4545-4555.	3.6	57
7	Implications of agar and agarase in industrial applications of sustainable marine biomass. Applied Microbiology and Biotechnology, 2020, 104, 2815-2832.	3.6	49
8	Transcriptional Control by A-Factor of Two Trypsin Genes in Streptomyces griseus. Journal of Bacteriology, 2005, 187, 286-295.	2.2	47
9	In vitro and in vivo investigation for biological activities of neoagarooligosaccharides prepared by hydrolyzing agar with β-agarase. Biotechnology and Bioprocess Engineering, 2017, 22, 489-496.	2.6	36
10	Heterologous expression of a newly screened β-agarase from Alteromonas sp. GNUM1 in Escherichia coli and its application for agarose degradation. Process Biochemistry, 2014, 49, 430-436.	3.7	34
11	Toxicological evaluation of neoagarooligosaccharides prepared by enzymatic hydrolysis of agar. Regulatory Toxicology and Pharmacology, 2017, 90, 9-21.	2.7	34
12	Biochemical characterization of a novel cold-adapted GH39 β-agarase, AgaJ9, from an agar-degrading marine bacterium Gayadomonas joobiniege G7. Applied Microbiology and Biotechnology, 2017, 101, 1965-1974.	3.6	30
13	Identification and Characterization of a Xyloglucan-Specific Family 74 Glycosyl Hydrolase from Streptomyces coelicolor A3(2). Applied and Environmental Microbiology, 2012, 78, 607-611.	3.1	29
14	Production and Characterization of a Novel Thermostable Extracellular Agarase from Pseudoalteromonas hodoensis Newly Isolated from the West Sea of South Korea. Applied Biochemistry and Biotechnology, 2014, 173, 1703-1716.	2.9	25
15	Molecular characterization of <i>Streptomyces coelicolor</i> A(3) SCO6548 as a cellulose 1,4-β-cellobiosidase. FEMS Microbiology Letters, 2016, 363, fnv245.	1.8	23
16	Cloning, Expression, and Biochemical Characterization of a GH16 β-Agarase AgaH71 from Pseudoalteromonas hodoensis H7. Applied Biochemistry and Biotechnology, 2015, 175, 733-747.	2.9	22
17	Isolation and Characterization of a Novel Agar-Degrading Marine Bacterium, Gayadomonas joobiniege gen, nov, sp. nov., from the Southern Sea, Korea. Journal of Microbiology and Biotechnology, 2013, 23, 1509-1518.	2.1	22
18	Genetic organization of the putative salbostatin biosynthetic gene cluster including the 2-epi-5-epi-valiolone synthase gene in Streptomyces albus ATCC 21838. Applied Microbiology and Biotechnology, 2008, 80, 637-645.	3.6	21

SOON-KWANG HONG

#	Article	IF	CITATIONS
19	Biochemical characterization of a novel cold-adapted agarotetraose-producing α-agarase, AgaWS5, from Catenovulum sediminis WS1-A. Applied Microbiology and Biotechnology, 2019, 103, 8403-8411.	3.6	20
20	Cloning, Expression, and Biochemical Characterization of a Novel Acidic GH16 β-Agarase, AgaJ11, from Gayadomonas joobiniege G7. Applied Biochemistry and Biotechnology, 2017, 181, 961-971.	2.9	19
21	Overexpression and secretion of AgaA7 from Pseudoalteromonas hodoensis sp. nov in Bacillus subtilis for the depolymerization of agarose. Enzyme and Microbial Technology, 2016, 90, 19-25.	3.2	18
22	Isolation and Characterization of an Agarase-Producing Bacterial Strain, Alteromonas sp. GNUM-1, from the West Sea, Korea. Journal of Microbiology and Biotechnology, 2012, 22, 1621-1628.	2.1	18
23	Biochemical Characterization of a Novel GH86 ï٤½?½?Agarase Producing Neoagarohexaose from Gayadomonas joobiniege G7. Journal of Microbiology and Biotechnology, 2018, 28, 284-292.	2.1	18
24	A Novel Alkaliphilic Xylanase from the Newly Isolated Mesophilic Bacillus sp. MX47: Production, Purification, and Characterization. Applied Biochemistry and Biotechnology, 2012, 168, 899-909.	2.9	17
25	Biochemical characterization of a novel iron-dependent GH16 β-agarase, AgaH92, from an agarolytic bacterium Pseudoalteromonas sp. H9. FEMS Microbiology Letters, 2015, 362, .	1.8	17
26	Identification and biochemical characterization of a novel cold-adapted 1,3-α-3,6-anhydro-l-galactosidase, Ahg786, from Gayadomonas joobiniege G7. Applied Microbiology and Biotechnology, 2018, 102, 8855-8866.	3.6	16
27	Neoagarooligosaccharides modulate gut microbiota and alleviate body weight gain and metabolic syndrome in high-fat diet-induced obese rats. Journal of Functional Foods, 2022, 88, 104869.	3.4	16
28	Characterization of thesgtR1andsgtR2genes and their role in regulating expression of thesprTgene encodingStreptomyces griseustrypsin. FEMS Microbiology Letters, 2007, 276, 75-82.	1.8	15
29	Production and characterization of a thermostable endo-type β-xylanase produced by a newly-isolated Streptomyces thermocarboxydus subspecies MW8 strain from Jeju Island. Process Biochemistry, 2013, 48, 1736-1743.	3.7	15
30	Genome Sequence of the Agar-Degrading Marine Bacterium Alteromonadaceae sp. Strain G7. Journal of Bacteriology, 2012, 194, 6961-6962.	2.2	14
31	Production of DagA and ethanol by sequential utilization of sugars in a mixed-sugar medium simulating microalgal hydrolysate. Bioresource Technology, 2015, 191, 414-419.	9.6	14
32	Characterization of a Novel Neoagarobiose-Producing GH42 β-Agarase, AgaJ10, from Gayadomonas joobiniege G7. Applied Biochemistry and Biotechnology, 2019, 189, 1-12.	2.9	14
33	Agarose hydrolysis by two-stage enzymatic process and bioethanol production from the hydrolysate. Process Biochemistry, 2016, 51, 759-764.	3.7	13
34	Identification and characterization of a novel β-galactosidase from Victivallis vadensis ATCC BAA-548, an anaerobic fecal bacterium. Journal of Microbiology, 2012, 50, 1034-1040.	2.8	12
35	Production of agarase from a novel Micrococcus sp. GNUM-08124 strain isolated from the East Sea of Korea. Biotechnology and Bioprocess Engineering, 2011, 16, 81-88.	2.6	11
36	Medium Optimization and Application of Affinity Column Chromatography for Trypsin Production from Recombinant Streptomyces griseus. Journal of Microbiology and Biotechnology, 2009, 19, 1191-6.	2.1	11

SOON-KWANG HONG

#	Article	IF	CITATIONS
37	Production of DagA, a 22-Agarase, by Streptomyces lividans in Glucose Medium or Mixed-Sugar Medium Simulating Microalgae Hydrolysate. Journal of Microbiology and Biotechnology, 2014, 24, 1622-1628.	2.1	11
38	Bacillus coreaensis sp. nov.: a xylan-hydrolyzing bacterium isolated from the soil of Jeju Island, Republic of Korea. Journal of Microbiology, 2015, 53, 448-453.	2.8	10
39	Molecular Characterization of Xylobiose- and Xylopentaose-Producing β-1,4-Endoxylanase SCO5931 from Streptomyces coelicolor A3(2). Applied Biochemistry and Biotechnology, 2016, 180, 349-360.	2.9	10
40	Molecular Cloning and Characterization of a Novel Cold-Adapted Alkaline 1,3-α-3,6-Anhydro-l-galactosidase, Ahg558, from Gayadomonas joobiniege G7. Applied Biochemistry and Biotechnology, 2019, 188, 1077-1095.	2.9	9
41	Overexpression of Shinorhizobium meliloti hemoprotein in Streptomyces lividans to enhance secondary metabolite production. Journal of Microbiology and Biotechnology, 2007, 17, 2066-70.	2.1	9
42	Lacl-Family Transcriptional Regulator DagR Acts as a Repressor of the Agarolytic Pathway Genes in Streptomyces coelicolor A3(2). Frontiers in Microbiology, 2021, 12, 658657.	3.5	8
43	Expression and characterization of the processive exoâ€Î²â€1,4â€cellobiohydrolase SCO6546 from <i>Streptomyces coelicolor</i> A(3). Journal of Basic Microbiology, 2018, 58, 310-321.	3.3	7
44	Enhancement of protein secretion by TatAC overexpression in Streptomyces griseus. Biotechnology and Bioprocess Engineering, 2011, 16, 59-71.	2.6	6
45	Molecular Characterization of an Endo-β-1,4-Glucanase, CelAJ93, from the Recently Isolated Marine Bacterium, Cellulophaga sp. J9-3. Applied Sciences (Switzerland), 2019, 9, 4061.	2.5	6
46	Characterization of the autophosphorylating kinase, PkaF, in Streptomyces coelicolor A3(2) M130. Archives of Microbiology, 2011, 193, 845-856.	2.2	5
47	Molecular Characterization of the ��-Galactosidase SCO0284 from Streptomyces coelicolor A3(2), a Family 27 Glycosyl Hydrolase. Journal of Microbiology and Biotechnology, 2016, 26, 1650-1656.	2.1	5
48	Production of Ethanol from Agarose by Unified Enzymatic Saccharification and Fermentation in Recombinant Yeast. Journal of Microbiology and Biotechnology, 2019, 29, 625-632.	2.1	5
49	Periplasmic expression, purification, and characterization of an anti-epidermal growth factor receptor antibody fragment in Escherichia coli. Biotechnology and Bioprocess Engineering, 2016, 21, 321-330.	2.6	4
50	Molecular Characterization of a Novel 1,3-α-3,6-Anhydro-L-Galactosidase, Ahg943, with Cold- and High-Salt-Tolerance from Gayadomonas joobiniege G7. Journal of Microbiology and Biotechnology, 2020, 30, 1659-1669.	2.1	4
51	Characterization of Sgr3394 produced only by the A-factor-producin Streptomyces griseus IFO 13350, not by the A-factor deficient mutant. Journal of Microbiology, 2011, 49, 155-160.	2.8	3
52	Characterization of Two Thermostable β-agarases from a Newly Isolated Marine Agarolytic Bacterium, Vibrio sp. S1. Biotechnology and Bioprocess Engineering, 2019, 24, 799-809.	2.6	3
53	Safety evaluation of β-agarase preparations from Streptomyces coelicolor A3(2). Regulatory Toxicology and Pharmacology, 2019, 101, 142-155.	2.7	3
54	NADP ⁺ -Dependent Dehydrogenase SCO3486 and Cycloisomerase SCO3480: Key Enzymes for 3,6-Anhydro-L-Galactose Catabolism in <i>Streptomyces coelicolor</i> A3(2). Journal of Microbiology and Biotechnology, 2021, 31, 756-763.	2.1	3

#	Article	IF	CITATIONS
55	Expression and characterization of trehalose biosynthetic modules in the adjacent locus of the salbostatin gene cluster. Journal of Microbiology and Biotechnology, 2007, 17, 1675-81.	2.1	3
56	Distinct regulation of the sprC gene encoding Streptomyces griseus protease C from other chymotrypsin genes in Streptomyces griseus IFO13350. Journal of Microbiology and Biotechnology, 2007, 17, 81-8.	2.1	1
57	Identification of a new marine bacterium Ruegeria sp. 50C-3 isolated from seawater of Uljin in Korea and production of thermostable enzymes. Korean Journal of Microbiology, 2016, 52, 344-351.	0.2	Ο