Alessandra Soriani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/220788/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reconstructing and Deconstructing Agonist-Induced Activation of Integrin αIIbβ3. Current Biology, 2006, 16, 1796-1806.	3.9	419
2	ATM-ATR–dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood, 2009, 113, 3503-3511.	1.4	384
3	Recruitment of circulating NK cells through decidual tissues: a possible mechanism controlling NK cells through decidual tissues: a possible mechanism controlling NK cell accumulation in the uterus during early pregnancy. Blood, 2008, 111, 3108-3115.	1.4	222
4	NKG2D and Its Ligands: "One for All, All for One― Frontiers in Immunology, 2018, 9, 476.	4.8	165
5	DNAM-1 ligand expression on Ag-stimulated T lymphocytes is mediated by ROS-dependent activation of DNA-damage response: relevance for NK–T cell interaction. Blood, 2011, 117, 4778-4786.	1.4	118
6	The Senescence-Associated Secretory Phenotype (SASP) in the Challenging Future of Cancer Therapy and Age-Related Diseases. Biology, 2020, 9, 485.	2.8	116
7	The DNA Damage Response: A Common Pathway in the Regulation of NKG2D and DNAM-1 Ligand Expression in Normal, Infected, and Cancer Cells. Frontiers in Immunology, 2014, 4, 508.	4.8	110
8	Regulation of Outside-in Signaling in Platelets by Integrin-associated Protein Kinase Cβ. Journal of Biological Chemistry, 2005, 280, 644-653.	3.4	109
9	Toward Highly Potent Cancer Agents by Modulating the C-2 Group of the Arylthioindole Class of Tubulin Polymerization Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 123-149.	6.4	107
10	Genotoxic stress modulates the release of exosomes from multiple myeloma cells capable of activating NK cell cytokine production: Role of HSP70/TLR2/NF-kB axis. OncoImmunology, 2017, 6, e1279372.	4.6	100
11	Natural Killer Cell Response to Chemotherapy-Stressed Cancer Cells: Role in Tumor Immunosurveillance. Frontiers in Immunology, 2017, 8, 1194.	4.8	100
12	RAC1/P38 MAPK Signaling Pathway Controls β1 Integrin–Induced Interleukin-8 Production in Human Natural Killer Cells. Immunity, 2000, 12, 7-16.	14.3	91
13	Genotoxic Stress Induces Senescence-Associated ADAM10-Dependent Release of NKG2D MIC Ligands in Multiple Myeloma Cells. Journal of Immunology, 2015, 195, 736-748.	0.8	85
14	Reactive Oxygen Species– and DNA Damage Response–Dependent NK Cell Activating Ligand Upregulation Occurs at Transcriptional Levels and Requires the Transcriptional Factor E2F1. Journal of Immunology, 2014, 193, 950-960.	0.8	81
15	Heat Shock Protein-90 Inhibitors Increase MHC Class I-Related Chain A and B Ligand Expression on Multiple Myeloma Cells and Their Ability to Trigger NK Cell Degranulation. Journal of Immunology, 2009, 183, 4385-4394.	0.8	79
16	The IMiDs targets IKZF-1/3 and IRF4 as novel negative regulators of NK cell-activating ligands expression in multiple myeloma. Oncotarget, 2015, 6, 23609-23630.	1.8	78
17	Chemerin Regulates NK Cell Accumulation and Endothelial Cell Morphogenesis in the Decidua during Early Pregnancy. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 3603-3612.	3.6	75
18	Inhibition of bromodomain and extra-terminal (BET) proteins increases NKG2D ligand MICA expression and sensitivity to NK cell-mediated cytotoxicity in multiple myeloma cells: role of cMYC-IRF4-miR-125b interplay. Journal of Hematology and Oncology, 2016, 9, 134.	17.0	72

#	Article	IF	CITATIONS
19	Design and Synthesis of 2-Heterocyclyl-3-arylthio-1 <i>H</i> -indoles as Potent Tubulin Polymerization and Cell Growth Inhibitors with Improved Metabolic Stability. Journal of Medicinal Chemistry, 2011, 54, 8394-8406.	6.4	70
20	A role for PKCtheta in outside-in alphallbbeta3 signaling. Journal of Thrombosis and Haemostasis, 2006, 4, 648-655.	3.8	69
21	Senescent cells: Living or dying is a matter of NK cells. Journal of Leukocyte Biology, 2019, 105, 1275-1283.	3.3	69
22	Integrin-mediated Ras–Extracellular Regulated Kinase (ERK) Signaling Regulates Interferon γ Production in Human Natural Killer Cells. Journal of Experimental Medicine, 1998, 188, 1267-1275.	8.5	67
23	Inhibition of Glycogen Synthase Kinase-3 Increases NKG2D Ligand MICA Expression and Sensitivity to NK Cell–Mediated Cytotoxicity in Multiple Myeloma Cells: Role of STAT3. Journal of Immunology, 2013, 190, 6662-6672.	0.8	64
24	CX3CR1/CX3CL1 axis negatively controls glioma cell invasion and is modulated by transforming growth factor-beta1. Neuro-Oncology, 2010, 12, 701-710.	1.2	63
25	Cannabinoids synergize with carfilzomib, reducing multiple myeloma cells viability and migration. Oncotarget, 2016, 7, 77543-77557.	1.8	62
26	NKG2D and DNAM-1 Ligands: Molecular Targets for NK Cell-Mediated Immunotherapeutic Intervention in Multiple Myeloma. BioMed Research International, 2015, 2015, 1-9.	1.9	61
27	Drug-Induced Senescent Multiple Myeloma Cells Elicit NK Cell Proliferation by Direct or Exosome-Mediated IL15 <i>Trans</i> -Presentation. Cancer Immunology Research, 2018, 6, 860-869.	3.4	59
28	Nitric oxide donors increase PVR/CD155 DNAM-1 ligand expression in multiple myeloma cells: role of DNA damage response activation. BMC Cancer, 2015, 15, 17.	2.6	54
29	Proline-Rich Tyrosine Kinase 2 and Rac Activation by Chemokine and Integrin Receptors Controls NK Cell Transendothelial Migration. Journal of Immunology, 2003, 170, 3065-3073.	0.8	52
30	New Indole Tubulin Assembly Inhibitors Cause Stable Arrest of Mitotic Progression, Enhanced Stimulation of Natural Killer Cell Cytotoxic Activity, and Repression of Hedgehog-Dependent Cancer. Journal of Medicinal Chemistry, 2015, 58, 5789-5807.	6.4	51
31	Axitinib induces DNA damage response leading to senescence, mitotic catastrophe, and increased NK cell recognition in human renal carcinoma cells. Oncotarget, 2015, 6, 36245-36259.	1.8	46
32	Natural killer cell recognition of <i>in vivo</i> drug-induced senescent multiple myeloma cells. Oncolmmunology, 2016, 5, e1218105.	4.6	40
33	Chemotherapy-elicited upregulation of NKC2D and DNAM-1 ligands as a therapeutic target in multiple myeloma. Oncolmmunology, 2013, 2, e26663.	4.6	35
34	Cancer Exosomes as Conveyors of Stress-Induced Molecules: New Players in the Modulation of NK Cell Response. International Journal of Molecular Sciences, 2019, 20, 611.	4.1	34
35	MICA-129 Dimorphism and Soluble MICA Are Associated With the Progression of Multiple Myeloma. Frontiers in Immunology, 2018, 9, 926.	4.8	33
36	p38 MAPK differentially controls NK activating ligands at transcriptional and post-transcriptional level on multiple myeloma cells. OncoImmunology, 2017, 6, e1264564.	4.6	29

ALESSANDRA SORIANI

#	Article	IF	CITATIONS
37	Key Role of the CD56lowCD16low Natural Killer Cell Subset in the Recognition and Killing of Multiple Myeloma Cells. Cancers, 2018, 10, 473.	3.7	29
38	Translating the anti-myeloma activity of Natural Killer cells into clinical application. Cancer Treatment Reviews, 2018, 70, 255-264.	7.7	28
39	Targeting NKG2D and NKp30 Ligands Shedding to Improve NK Cell-Based Immunotherapy. Critical Reviews in Immunology, 2016, 36, 445-460.	0.5	27
40	<scp>IL</scp> â€15 inhibits <scp>IL</scp> â€7Rα expression by memoryâ€phenotype <scp>CD</scp> 8 ⁺ <scp>T</scp> cells in the bone marrow. European Journal of Immunology, 2012, 42, 1129-1139.	2.9	25
41	Sorafenib induces cathepsin B-mediated apoptosis of bladder cancer cells by regulating the Akt/PTEN pathway. The Akt inhibitor, perifosine, enhances the sorafenib-induced cytotoxicity against bladder cancer cells Oncoscience, 2015, 2, 395-409.	2.2	25
42	Chemokine regulation of innate lymphoid cell tissue distribution and function. Cytokine and Growth Factor Reviews, 2018, 42, 47-55.	7.2	22
43	Impact on NK cell functions of acute versus chronic exposure to extracellular vesicleâ€associated MICA: Dual role in cancer immunosurveillance. Journal of Extracellular Vesicles, 2022, 11, e12176.	12.2	22
44	Bone Marrow Stromal Cell-Derived IL-8 Upregulates PVR Expression on Multiple Myeloma Cells via NF-kB Transcription Factor. Cancers, 2020, 12, 440.	3.7	21
45	TREM1/3 Deficiency Impairs Tissue Repair After Acute Kidney Injury and Mitochondrial Metabolic Flexibility in Tubular Epithelial Cells. Frontiers in Immunology, 2019, 10, 1469.	4.8	20
46	How Mucosal Epithelia Deal with Stress: Role of NKG2D/NKG2D Ligands during Inflammation. Frontiers in Immunology, 2017, 8, 1583.	4.8	19
47	Activation of liver X receptor upâ€regulates the expression of the NKG2D ligands MICA and MICB in multiple myeloma through different molecular mechanisms. FASEB Journal, 2019, 33, 9489-9504.	0.5	19
48	Hitting More Birds with a Stone: Impact of TGF-Î ² on ILC Activity in Cancer. Journal of Clinical Medicine, 2020, 9, 143.	2.4	19
49	Defective expression of the T-cell receptor-CD3 ζ chain in T-cell acute lymphoblastic leukaemia. British Journal of Haematology, 2003, 120, 201-208.	2.5	18
50	In Situ Study of Chemokine and Chemokine-Receptor Expression in Kaposi Sarcoma. American Journal of Dermatopathology, 2003, 25, 377-383.	0.6	16
51	Cancer extracellular vesicles as novel regulators of NK cell response. Cytokine and Growth Factor Reviews, 2020, 51, 19-26.	7.2	13
52	Immunomodulatory effect of NEDD8-activating enzyme inhibition in Multiple Myeloma: upregulation of NKG2D ligands and sensitization to Natural Killer cell recognition. Cell Death and Disease, 2021, 12, 836.	6.3	13
53	The homeobox transcription factor MEIS2 is a regulator of cancer cell survival and IMiDs activity in Multiple Myeloma: modulation by Bromodomain and Extra-Terminal (BET) protein inhibitors. Cell Death and Disease, 2019, 10, 324.	6.3	11
54	The Human Antibody Fragment DIATHIS1 Specific for CEACAM1 Enhances Natural Killer Cell Cytotoxicity Against Melanoma Cell Lines In Vitro. Journal of Immunotherapy, 2015, 38, 357-370.	2.4	8

#	Article	IF	CITATIONS
55	GM-CSF Inhibits c-Kit and SCF Expression by Bone Marrow-Derived Dendritic Cells. Frontiers in Immunology, 2017, 8, 147.	4.8	7
56	Dendritic cells modulate câ€kit expression on the edge between activation and death. European Journal of Immunology, 2019, 49, 534-545.	2.9	7
57	Cereblon regulates NK cell cytotoxicity and migration via Rac1 activation. European Journal of Immunology, 2021, 51, 2607-2617.	2.9	5
58	Self or Non-Self? It Is also a Matter of RNA Recognition and Editing by ADAR1. Biology, 2022, 11, 568.	2.8	4