Karin R Sipido

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2207595/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reduced synchrony of Ca2+ release with loss of T-tubules—a comparison to Ca2+ release in human failing cardiomyocytes. Cardiovascular Research, 2004, 62, 63-73.	3.8	265
2	Enhanced Ca ²⁺ Release and Na/Ca Exchange Activity in Hypertrophied Canine Ventricular Myocytes. Circulation, 2000, 102, 2137-2144.	1.6	261
3	Downregulation of Delayed Rectifier K ⁺ Currents in Dogs With Chronic Complete Atrioventricular Block and Acquired Torsades de Pointes. Circulation, 1999, 100, 2455-2461.	1.6	236
4	Probing the Contribution of I Ks to Canine Ventricular Repolarization. Circulation, 2003, 107, 2753-2760.	1.6	230
5	Selective inhibition of Cx43 hemichannels by Gap19 and its impact on myocardial ischemia/reperfusion injury. Basic Research in Cardiology, 2013, 108, 309.	5.9	216
6	Remodeling of T-Tubules and Reduced Synchrony of Ca ²⁺ Release in Myocytes From Chronically Ischemic Myocardium. Circulation Research, 2008, 102, 338-346.	4.5	208
7	Repolarizing K ⁺ Currents <i>I</i> _{TO1} and <i>I</i> _{Ks} Are Larger in Right Than Left Canine Ventricular Midmyocardium. Circulation, 1999, 99, 206-210.	1.6	200
8	Altered Na/Ca exchange activity in cardiac hypertrophy and heart failure: a new target for therapy?. Cardiovascular Research, 2002, 53, 782-805.	3.8	191
9	Sudden Death of a Young Adult Associated with Bacillus cereus Food Poisoning. Journal of Clinical Microbiology, 2011, 49, 4379-4381.	3.9	183
10	Cellular Basis of Biventricular Hypertrophy and Arrhythmogenesis in Dogs With Chronic Complete Atrioventricular Block and Acquired Torsade de Pointes. Circulation, 1998, 98, 1136-1147.	1.6	171
11	Ventricular Phosphodiesterase-5 Expression Is Increased in Patients With Advanced Heart Failure and Contributes to Adverse Ventricular Remodeling After Myocardial Infarction in Mice. Circulation, 2009, 119, 408-416.	1.6	169
12	Ultrastructural and Functional Remodeling of the Coupling Between Ca ²⁺ Influx and Sarcoplasmic Reticulum Ca ²⁺ Release in Right Atrial Myocytes From Experimental Persistent Atrial Fibrillation. Circulation Research, 2009, 105, 876-885.	4.5	160
13	Na ⁺ /Ca ²⁺ exchange and Na ⁺ /K ⁺ â€ATPase in the heart. Journal of Physiology, 2015, 593, 1361-1382.	2.9	160
14	Low Efficiency of Ca ²⁺ Entry Through the Na ⁺ -Ca ²⁺ Exchanger as Trigger for Ca ²⁺ Release From the Sarcoplasmic Reticulum. Circulation Research, 1997, 81, 1034-1044.	4.5	158
15	Intracellular Na in animal models of hypertrophy and heart failure: contractile function and arrhythmogenesis. Cardiovascular Research, 2003, 57, 887-896.	3.8	137
16	Connexin mimetic peptides inhibit Cx43 hemichannel opening triggered by voltage and intracellular Ca2+ elevation. Basic Research in Cardiology, 2012, 107, 304.	5.9	132
17	Myofibroblast Phenotype and Reversibility of Fibrosis in Patients With End-Stage Heart Failure. Journal of the American College of Cardiology, 2019, 73, 2267-2282.	2.8	119
18	Inhibition and Rapid Recovery of Ca ²⁺ Current During Ca ²⁺ Release From Sarcoplasmic Reticulum in Guinea Pig Ventricular Myocytes. Circulation Research, 1995, 76, 102-109.	4.5	116

#	Article	IF	CITATIONS
19	Early Exercise Training Normalizes Myofilament Function and Attenuates Left Ventricular Pump Dysfunction in Mice With a Large Myocardial Infarction. Circulation Research, 2007, 100, 1079-1088.	4.5	112
20	Mechanisms Underlying the Frequency Dependence of Contraction and [Ca 2+] i Transients in Mouse Ventricular Myocytes. Journal of Physiology, 2002, 543, 889-898.	2.9	109
21	T-type Ca2+current as a trigger for Ca2+release from the sarcoplasmic reticulum in guinea-pig ventricular myocytes. Journal of Physiology, 1998, 508, 439-451.	2.9	106
22	Spatial and Temporal Inhomogeneities During Ca 2+ Release From the Sarcoplasmic Reticulum in Pig Ventricular Myocytes. Circulation Research, 2002, 91, 1023-1030.	4.5	100
23	Transcriptome Characterization of Estrogen-Treated Human Myocardium Identifies Myosin Regulatory Light Chain Interacting Protein as a Sex-Specific Element Influencing Contractile Function. Journal of the American College of Cardiology, 2012, 59, 410-417.	2.8	95
24	Replacement of the Muscle-Specific Sarcoplasmic Reticulum Ca 2+ -ATPase Isoform SERCA2a by the Nonmuscle SERCA2b Homologue Causes Mild Concentric Hypertrophy and Impairs Contraction-Relaxation of the Heart. Circulation Research, 2001, 89, 838-846.	4.5	93
25	Ryanodine receptor cluster fragmentation and redistribution in persistent atrial fibrillation enhance calcium release. Cardiovascular Research, 2015, 108, 387-398.	3.8	93
26	Accumulation of slowly activating delayed rectifier potassium current (IKs) in canine ventricular myocytes. Journal of Physiology, 2003, 551, 777-786.	2.9	93
27	Magnesium-inhibited, TRPM6/7-like channel in cardiac myocytes: permeation of divalent cations and pH-mediated regulation. Journal of Physiology, 2004, 559, 761-776.	2.9	87
28	Pharmacological Inhibition of Na/Ca Exchange Results in Increased Cellular Ca ²⁺ Load Attributable to the Predominance of Forward Mode Block. Circulation Research, 2008, 102, 1398-1405.	4.5	83
29	The continuum of personalized cardiovascular medicine: a position paper of the European Society of Cardiology. European Heart Journal, 2014, 35, 3250-3257.	2.2	81
30	Increased Na+ concentration and altered Na/K pump activity in hypertrophied canine ventricular cells. Cardiovascular Research, 2003, 57, 1035-1043.	3.8	78
31	Reversible and irreversible differentiation of cardiac fibroblasts. Cardiovascular Research, 2014, 101, 411-422.	3.8	77
32	Pharmacological modulation of connexinâ€formed channels in cardiac pathophysiology. British Journal of Pharmacology, 2011, 163, 469-483.	5.4	75
33	Intracellular Na+ and altered Na+ transport mechanisms in cardiac hypertrophy and failure. Journal of Molecular and Cellular Cardiology, 2003, 35, 5-25.	1.9	71
34	Microdomain [Ca ²⁺] near ryanodine receptors as reported by Lâ€ŧype Ca ²⁺ and Na ⁺ /Ca ²⁺ exchange currents. Journal of Physiology, 2011, 589, 2569-2583.	2.9	70
35	Dyssynchrony of Ca2+ release from the sarcoplasmic reticulum as subcellular mechanism of cardiac contractile dysfunction. Journal of Molecular and Cellular Cardiology, 2011, 50, 390-400.	1.9	65
36	Crosstalk between L-type Ca2+ channels and the sarcoplasmic reticulum: alterations during cardiac remodelling. Cardiovascular Research, 2007, 77, 315-324.	3.8	63

#	Article	IF	CITATIONS
37	Na/Ca Exchange and Cardiac Ventricular Arrhythmias. Annals of the New York Academy of Sciences, 2007, 1099, 339-348.	3.8	63
38	Cellular Mechanisms of Contractile Dysfunction in Hibernating Myocardium. Circulation Research, 2004, 94, 794-801.	4.5	62
39	Mechanisms of Postsystolic Thickening in Ischemic Myocardium: Mathematical Modelling and Comparison With Experimental Ischemic Substrates. Ultrasound in Medicine and Biology, 2007, 33, 1963-1970.	1.5	61
40	Global fibroblast activation throughout the left ventricle but localized fibrosis after myocardial infarction. Scientific Reports, 2017, 7, 10801.	3.3	59
41	Window Ca2+current and its modulation by Ca2+release in hypertrophied cardiac myocytes from dogs with chronic atrioventricular block. Journal of Physiology, 2007, 579, 147-160.	2.9	58
42	Calcium Signaling in Cardiomyocyte Function. Cold Spring Harbor Perspectives in Biology, 2020, 12, a035428.	5.5	58
43	Alternative strategies in arrhythmia therapy: Evaluation of Na/Ca exchange as an anti-arrhythmic target. , 2012, 134, 26-42.		56
44	A SERCA2 pump with an increased Ca2+ affinity can lead to severe cardiac hypertrophy, stress intolerance and reduced life span. Journal of Molecular and Cellular Cardiology, 2006, 41, 308-317.	1.9	54
45	Temporal patterns of electrical remodeling in canine ventricular hypertrophy: Focus on IKs downregulation and blunted β-adrenergic activation. Cardiovascular Research, 2006, 72, 90-100.	3.8	54
46	Cx43 hemichannel microdomain signaling at the intercalated disc enhances cardiac excitability. Journal of Clinical Investigation, 2021, 131, .	8.2	54
47	Subcellular Heterogeneity of Ryanodine Receptor Properties in Ventricular Myocytes with Low T-Tubule Density. PLoS ONE, 2011, 6, e25100.	2.5	53
48	[Na+] in the subsarcolemmal â€~fuzzy' space and modulation of [Ca2+]i and contraction in cardiac myocytes. Cell Calcium, 2004, 35, 603-612.	2.4	52
49	Intracellular Dyssynchrony of Diastolic Cytosolic [Ca ²⁺] Decay in Ventricular Cardiomyocytes in Cardiac Remodeling and Human Heart Failure. Circulation Research, 2013, 113, 527-538.	4.5	50
50	Myofibroblast modulation of cardiac myocyte structure and function. Scientific Reports, 2019, 9, 8879.	3.3	49
51	Hyperactive ryanodine receptors in human heart failure and ischaemic cardiomyopathy reside outside of couplons. Cardiovascular Research, 2018, 114, 1512-1524.	3.8	47
52	Melusin protects from cardiac rupture and improves functional remodelling after myocardial infarction. Cardiovascular Research, 2014, 101, 97-107.	3.8	46
53	Monensin-induced Reversal of Positive Force–Frequency Relationship in Cardiac Muscle: Role of Intracellular Sodium in Rest-dependent Potentiation of Contraction. Journal of Molecular and Cellular Cardiology, 1997, 29, 977-989	1.9	44
54	Exercise training does not improve cardiac function in compensated or decompensated left ventricular hypertrophy induced by aortic stenosis. Journal of Molecular and Cellular Cardiology, 2011, 50, 1017-1025.	1.9	44

#	Article	IF	CITATIONS
55	Combined Na + /Ca 2+ Exchanger and L-Type Calcium Channel Block as a Potential Strategy to Suppress Arrhythmias and Maintain Ventricular Function. Circulation: Arrhythmia and Electrophysiology, 2013, 6, 371-379.	4.8	44
56	Different Patterns of Angiotensin II and Atrial Natriuretic Peptide Secretion in a Sheep Model of Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 2001, 12, 1387-1392.	1.7	41
57	Calcium overload, spontaneous calcium release, and ventricular arrhythmias. Heart Rhythm, 2006, 3, 977-979.	0.7	40
58	Hot topics and trends in cardiovascular research. European Heart Journal, 2019, 40, 2363-2374.	2.2	40
59	Ca2+ transport ATPase isoforms SERCA2a and SERCA2b are targeted to the same sites in the murine heart. Cell Calcium, 2003, 34, 457-464.	2.4	39
60	Inactivation of Smad5 in Endothelial Cells and Smooth Muscle Cells Demonstrates that Smad5 Is Required for Cardiac Homeostasis. American Journal of Pathology, 2007, 170, 1460-1472.	3.8	38
61	Role of nitric oxide and oxidative stress in a sheep model of persistent atrial fibrillation. Europace, 2013, 15, 754-760.	1.7	38
62	Selective Modulation of Coupled Ryanodine Receptors During Microdomain Activation of Calcium/Calmodulin-Dependent Kinase II in the Dyadic Cleft. Circulation Research, 2013, 113, 1242-1252.	4.5	37
63	Cellular basis for triggered ventricular arrhythmias that occur in the setting of compensated hypertrophy and heart failure: considerations for diagnosis and treatment. Journal of Electrocardiology, 2007, 40, S8-S14.	0.9	35
64	Targeting calcium handling in arrhythmias. Europace, 2008, 10, 1364-1369.	1.7	35
65	Mapping cross-border collaboration and communication in cardiovascular research from 1992 to 2012. European Heart Journal, 2017, 38, ehw459.	2.2	34
66	Histological correlate of a cardiac magnetic resonance imaged microvascular obstruction in a porcine model of ischemia–reperfusion. Cardiovascular Pathology, 2012, 21, 129-131.	1.6	33
67	Calcium/calmodulinâ€dependent kinase II and nitric oxide synthase 1â€dependent modulation of ryanodine receptors during βâ€adrenergic stimulation is restricted to the dyadic cleft. Journal of Physiology, 2016, 594, 5923-5939.	2.9	33
68	Animal models and animal-free innovations for cardiovascular research: current status and routes to be explored. Consensus document of the ESC Working Group on Myocardial Function and the ESC Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2022, 118, 3016-3051.	3.8	30
69	[Ca2+]i-dependent membrane currents in guinea-pig ventricular cells in the absence of Na/Ca exchange. Pflugers Archiv European Journal of Physiology, 1995, 430, 871-878.	2.8	29
70	Reduced Force Generating Capacity in Myocytes From Chronically Ischemic, Hibernating Myocardium. Circulation Research, 2007, 100, 229-237.	4.5	29
71	Something old, something new: Changing views on the cellular mechanisms of heart failure. Cardiovascular Research, 2005, 68, 167-174.	3.8	28
72	Identifying needs and opportunities for advancing translational research in cardiovascular disease. Cardiovascular Research, 2009, 83, 425-435.	3.8	28

#	Article	IF	CITATIONS
73	Ca 2+ Uptake by the Sarcoplasmic Reticulum in Ventricular Myocytes of the SERCA2 b/b Mouse Is Impaired at Higher Ca 2+ Loads Only. Circulation Research, 2003, 92, 881-887.	4.5	26
74	Understanding Cardiac Alternans. Circulation Research, 2004, 94, 570-572.	4.5	25
75	Sodium Calcium Exchange in the Heart. Circulation Research, 2004, 95, 549-551.	4.5	24
76	Early exercise training after myocardial infarction prevents contractile but not electrical remodelling or hypertrophy. Cardiovascular Research, 2010, 86, 72-81.	3.8	22
77	Calcium release near l-type calcium channels promotes beat-to-beat variability in ventricular myocytes from the chronic AV block dog. Journal of Molecular and Cellular Cardiology, 2015, 89, 326-334.	1.9	22
78	Reduced mitochondrial respiration in the ischemic as well as in the remote nonischemic region in postmyocardial infarction remodeling. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H1075-H1090.	3.2	21
79	Ventricular Arrhythmias in Ischemic Cardiomyopathy—New Avenues for Mechanism-Guided Treatment. Cells, 2021, 10, 2629.	4.1	21
80	Altered adrenergic response in myocytes bordering a chronic myocardial infarction underlies in vivo triggered activity and repolarization instability. Journal of Physiology, 2020, 598, 2875-2895.	2.9	20
81	Role of the Na/Ca Exchanger in Arrhythmias in Compensated Hypertrophy. Annals of the New York Academy of Sciences, 2002, 976, 438-445.	3.8	19
82	Improving public health by improving clinical trial guidelines and their application. European Heart Journal, 2017, 38, 1632-1637.	2.2	19
83	Contractile responses to endothelin-1 are regulated by PKC phosphorylation of cardiac myosin binding protein-C in rat ventricular myocytes. Journal of Molecular and Cellular Cardiology, 2018, 117, 1-18.	1.9	19
84	Extracellular SPARC increases cardiomyocyte contraction during health and disease. PLoS ONE, 2019, 14, e0209534.	2.5	19
85	Increased phospholamban phosphorylation limits theÂforce–frequency response inÂtheÂMLP–/– mouse with heart failure. Journal of Molecular and Cellular Cardiology, 2006, 40, 350-360.	1.9	18
86	CaM or cAMP. Circulation Research, 2007, 100, 296-298.	4.5	18
87	T-tubules and ryanodine receptor microdomains: on the road to translation. Cardiovascular Research, 2013, 98, 159-161.	3.8	18
88	The Cardiovascular Research community calls for action to address the growing burden of cardiovascular disease. Cardiovascular Research, 2019, 115, e96-e98.	3.8	17
89	Non-invasive characterization of the area-at-risk using magnetic resonance imaging in chronic ischaemia. Cardiovascular Research, 2011, 89, 166-174.	3.8	16
90	Discrete sites of frequent premature ventricular complexes cluster within the infarct border zone and coincide with high frequency of delayed afterdepolarizations under adrenergic stimulation. Heart Rhythm, 2021, 18, 1976-1987.	0.7	16

#	Article	IF	CITATIONS
91	Targeting Sarcoplasmic Reticulum Ca ²⁺ Uptake to Improve Heart Failure. Circulation Research, 2010, 106, 230-233.	4.5	15
92	Low-flow support of the chronic pressure–overloaded right ventricle induces reversed remodeling. Journal of Heart and Lung Transplantation, 2018, 37, 151-160.	0.6	15
93	Human iPSC model reveals a central role for NOX4 and oxidative stress in Duchenne cardiomyopathy. Stem Cell Reports, 2022, 17, 352-368.	4.8	15
94	Efficiency of L-type Ca2+ Current Compared to Reverse Mode Na/Ca Exchange or T-type Ca2+ Current as Trigger for Ca2+ Release from the Sarcoplasmic Reticulum. Annals of the New York Academy of Sciences, 1998, 853, 357-360.	3.8	14
95	Microvolt T-wave alternans and beat-to-beat variability of repolarization during early postischemic remodeling in a pig heart. Heart Rhythm, 2011, 8, 1050-1057.	0.7	14
96	Impaired calcium homeostasis is associated with sudden cardiac death and arrhythmias in a genetic equivalent mouse model of the human HRC-Ser96Ala variant. Cardiovascular Research, 2017, 113, 1403-1417.	3.8	14
97	Overcoming fragmentation of health research in Europe: lessons from COVID-19. Lancet, The, 2020, 395, 1970-1971.	13.7	14
98	Myocardial Hibernation. Circulation Research, 2004, 94, 1005-1007.	4.5	13
99	Inhibition of the calcium-activated chloride current in cardiac ventricular myocytes by N-(p-amylcinnamoyl)anthranilic acid (ACA). Biochemical and Biophysical Research Communications, 2010, 402, 531-536.	2.1	13
100	Basic Methods for Monitoring Intracellular Ca ²⁺ in Cardiac Myocytes Using Fluo-3. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot076950.	0.3	12
101	Myocyte Remodeling Due to Fibro-Fatty Infiltrations Influences Arrhythmogenicity. Frontiers in Physiology, 2018, 9, 1381.	2.8	12
102	Bedside to bench: a look at experimental research with a clinical trial checklist. Cardiovascular Research, 2014, 101, 1-3.	3.8	11
103	Activin A Modulates CRIPTO-1/HNF4 <i>α</i> ⁺ Cells to Guide Cardiac Differentiation from Human Embryonic Stem Cells. Stem Cells International, 2017, 2017, 1-17.	2.5	11
104	Closed-chest animal model of chronic coronary artery stenosis. Assessment with magnetic resonance imaging. International Journal of Cardiovascular Imaging, 2010, 26, 299-308.	1.5	10
105	Nitric oxide delays atrial tachycardia-induced electrical remodelling in a sheep model. Europace, 2011, 13, 747-754.	1.7	10
106	Dataâ€based theoretical identification of subcellular calcium compartments and estimation of calcium dynamics in cardiac myocytes. Journal of Physiology, 2012, 590, 4423-4446.	2.9	10
107	Ca2+ release via InsP3Rs enhances RyR recruitment during Ca2+ transients by increasing dyadic [Ca2+] in cardiomyocytes. Journal of Cell Science, 2021, 134, .	2.0	10
108	Incomplete Assembly of the Dystrophin-Associated Protein Complex in 2D and 3D-Cultured Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Frontiers in Cell and Developmental Biology, 2021, 9, 737840.	3.7	10

#	Article	IF	CITATIONS
109	A Changing Landscape in Cardiovascular Research Publication Output. Journal of the American College of Cardiology, 2018, 71, 1584-1589.	2.8	9
110	Further insights into blood pressure induced premature beats: Transient depolarizations are associated with fast myocardial deformation upon pressure decline. Heart Rhythm, 2015, 12, 2305-2315.	0.7	8
111	Scientific Panel for Health: better research for better health. Lancet, The, 2016, 388, 865-866.	13.7	8
112	MSK-Mediated Phosphorylation of Histone H3 Ser28 Couples MAPK Signalling with Early Gene Induction and Cardiac Hypertrophy. Cells, 2022, 11, 604.	4.1	8
113	Mind the Model: Effect of Instrumentation on Inducibility of Atrial Fibrillation in a Sheep Model. Journal of Cardiovascular Electrophysiology, 2002, 13, 62-67.	1.7	7
114	The Amiodarone Derivative KB130015 [2-Methyl-3-(3,5-diiodo-4-carboxymethoxybenzyl)benzofuran] Induces an Na+-Dependent Increase of [Ca2+] in Ventricular Myocytes. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 162-168.	2.5	7
115	Peer review: (r)evolution needed. Cardiovascular Research, 2017, 113, e54-e56.	3.8	7
116	The generosity of the Cardiovascular Research community. Cardiovascular Research, 2017, 113, 1701-1702.	3.8	7
117	Local Ca 2+ Release in Heart Failure. Circulation Research, 2000, 87, 966-968.	4.5	6
118	FKBP12.6 overexpression does not protect against remodelling after myocardial infarction. Experimental Physiology, 2013, 98, 134-148.	2.0	6
119	Can Body Surface Microvolt Tâ€Wave Alternans Distinguish Concordant and Discordant Intracardiac Alternans?. PACE - Pacing and Clinical Electrophysiology, 2013, 36, 1007-1016.	1.2	6
120	CardioScape mapping the cardiovascular funding landscape in Europe. European Heart Journal, 2018, 39, 2423-2430.	2.2	6
121	RNA-sequencing reveals that STRN, ZNF484 and WNK1 add to the value of mitochondrial MT-COI and COX10 as markers of unstable coronary artery disease. PLoS ONE, 2019, 14, e0225621.	2.5	5
122	Temporal Changes in Beatâ€toâ€Beat Variability of Repolarization Predict Imminent Nonsustained Ventricular Tachycardia in Patients With Ischemic and Nonischemic Dilated Cardiomyopathy. Journal of the American Heart Association, 0, , .	3.7	5
123	What does the future hold for Cardiovascular Research?. Cardiovascular Research, 2013, 97, 1-3.	3.8	4
124	Measuring Sarcoplasmic Reticulum Ca ²⁺ Content, Fractional Release, and Ca ²⁺ Buffering in Cardiac Myocytes. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot076976.	0.3	4
125	Irreproducible results in preclinical cardiovascular research: opportunities in times of need. Cardiovascular Research, 2019, 115, e34-e36.	3.8	4
126	Health research and knowledge translation for achieving the sustainable development goals: tackling the hurdles. European Journal of Public Health, 2020, 30, i36-i40.	0.3	4

#	Article	IF	CITATIONS
127	The growing burden of cardiovascular disease. European Heart Journal, 2012, 33, 1540-1.	2.2	4
128	Characterizing the Trigger for Sarcoplasmic Reticulum Ca2+Release in Cardiac Myocytes. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot076968.	0.3	3
129	Assessing Ca ²⁺ -Removal Pathways in Cardiac Myocytes. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot076992.	0.3	3
130	Triggering controversy in cardiac excitation–contraction coupling. Journal of Molecular and Cellular Cardiology, 2003, 35, 133-135.	1.9	2
131	Dofetilide as Activator of Na/Ca Exchange: New Perspectives on an â€ [~] Old' Drug. Cardiovascular Drugs and Therapy, 2009, 23, 189-192.	2.6	2
132	Medical societies unite to support research in Europe. European Journal of Immunology, 2011, 41, 1187-1188.	2.9	2
133	Hot topics and networks inCardiovascular Research. Cardiovascular Research, 2015, 108, 313-318.	3.8	2
134	Cardiovascular Research turns the spotlight onto the right ventricle. Cardiovascular Research, 2017, 113, e45-e46.	3.8	2
135	Editorial highlights from Cardiovascular Research. Cardiovascular Research, 2017, 113, e64-e68.	3.8	2
136	How Old Is Your Heart?. Circulation Research, 2007, 101, 323-325.	4.5	1
137	Alliance for biomedical research in Europe. EMBO Molecular Medicine, 2011, 3, 505-506.	6.9	1
138	Blink and You'll See It. Circulation Research, 2011, 108, 154-156.	4.5	1
139	Cardiovascular Research as a forum for publications from China: present, past, and future. Cardiovascular Research, 2014, 104, 383-387.	3.8	1
140	A Systematic Approach for Assessing Ca ²⁺ Handling in Cardiac Myocytes. Cold Spring Harbor Protocols, 2015, 2015, pdb.top066142.	0.3	1
141	Measuring Ca ²⁺ Sparks in Cardiac Myocytes. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot076984.	0.3	1
142	â€~A picture is worth a thousand words': image highlights from Cardiovascular Research. Cardiovascular Research, 2016, 112, 622-625.	3.8	1
143	Nonexcitatory stimulation as a novel treatment for heart failure: cause for excitement?. European Heart Journal, 2004, 25, 626-628.	2.2	0
144	Response to Letter Regarding Article, "Ventricular Phosphodiesterase-5 Expression Is Increased in Patients With Advanced Heart Failure and Contributes to Adverse Ventricular Remodeling After Myocardial Infarction in Mice― Circulation, 2009, 120, .	1.6	0

#	Article	IF	CITATIONS
145	FKBP12.6 Overexpression Blunts Cardiomyocyte Remodeling After Left-ventricular Pressure-overload. Biophysical Journal, 2009, 96, 110a-111a.	0.5	0
146	Impairment of trafficking by downregulation of an anchor protein: Novel insights into additional mechanisms responsible for heart failure. Heart Rhythm, 2012, 9, 821-822.	0.7	0
147	Welcome to Cardiovascular Research in 2015. Cardiovascular Research, 2015, 105, 1-2.	3.8	Ο
148	Virtual issue: focus on cardiovascular protection. Cardiovascular Research, 2016, 111, 125-127.	3.8	0
149	Letter by Sipido and Cläzel Regarding Article, "Poorly Cited Articles in Peer-Reviewed Cardiovascular Journals from 1997 to 2007: Analysis of 5-Year Citation Rates― Circulation, 2016, 133, e22.	1.6	Ο
150	Spotlight on atrial fibrillation in <i>Cardiovascular Research</i> . Cardiovascular Research, 2016, 109, 463-464.	3.8	0
151	Open access and Plan S: a â€~prisoner's dilemma'. European Heart Journal, 2019, 40, 3745-3747.	2.2	Ο
152	Using a Genetic Algorithm to Parameterize a Mathematical Model of a Porcine Ventricular Cardiomyocyte. Biophysical Journal, 2021, 120, 333a.	0.5	0
153	Calcium and postoperative atrial fibrillation: round up the usual suspects!. Cardiovascular Research, 2021, 117, 1614-1615.	3.8	Ο
154	Edward Carmeliet: his contributions and scientific legacy. Journal of Physiology, 2021, 599, 4727-4729.	2.9	0
155	Sexâ€specific regulation of contractile function by 17βâ€estradiol in mouse cardiomyocytes. FASEB Journal, 2011, 25, 1060.6.	0.5	0
156	OUP accepted manuscript. Cardiovascular Research, 2021, , .	3.8	0
157	A new Alliance: biomedical societies in Europe unite to support research. European Heart Journal, 2011, 32, 2224-4a.	2.2	0