Raquel Cortés

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2206859/publications.pdf

Version: 2024-02-01

51 papers	1,114 citations	19 h-index	4	31 g-index
63 all docs	63 docs citations	63 times ranked		1660 citing authors

#	Article	IF	Citations
1	Exosomal and Plasma Non-Coding RNA Signature Associated with Urinary Albumin Excretion in Hypertension. International Journal of Molecular Sciences, 2022, 23, 823.	4.1	9
2	Mesenchymal Stem Cell-Derived Extracellular Vesicles as Non-Coding RNA Therapeutic Vehicles in Autoimmune Diseases. Pharmaceutics, 2022, 14, 733.	4.5	10
3	Biofluid Specificity of Long Non-Coding RNA Profile in Hypertension: Relevance of Exosomal Fraction. International Journal of Molecular Sciences, 2022, 23, 5199.	4.1	1
4	Urinary exosomal miR-146a as a marker of albuminuria, activity changes and disease flares in lupus nephritis. Journal of Nephrology, 2021, 34, 1157-1167.	2.0	48
5	Therapeutic Potential of Extracellular Vesicles in Hypertension-Associated Kidney Disease. Hypertension, 2021, 77, 28-38.	2.7	18
6	Urinary- and Plasma-Derived Exosomes Reveal a Distinct MicroRNA Signature Associated With Albuminuria in Hypertension. Hypertension, 2021, 77, 960-971.	2.7	32
7	EXOSOMAL MICRORNA-26A RESPONSE TO TGF-B1 STRESS IN HYPERTENSION. Journal of Hypertension, 2021, 39, e251.	0.5	O
8	URINARY EXOSOME MIR-146A IS A POTENTIAL MARKER OF ALBUMINURIA IN ESSENTIAL HYPERTENSION. Journal of Hypertension, 2021, 39, e296.	0.5	0
9	Supervised Analysis for Phenotype Identification: The Case of Heart Failure Ejection Fraction Class. Bioengineering, 2021, 8, 85.	3.5	2
10	Small Rab GTPases in Intracellular Vesicle Trafficking: The Case of Rab3A/Raphillin-3A Complex in the Kidney. International Journal of Molecular Sciences, 2021, 22, 7679.	4.1	9
11	Exosomes as Drug Delivery Systems: Endogenous Nanovehicles for Treatment of Systemic Lupus Erythematosus. Pharmaceutics, 2021, 13, 3.	4.5	46
12	Decreased Urinary Levels of SIRT1 as Non-Invasive Biomarker of Early Renal Damage in Hypertension. International Journal of Molecular Sciences, 2020, 21, 6390.	4.1	9
13	The Rab-Rabphilin system in injured human podocytes stressed by glucose overload and angiotensin II. American Journal of Physiology - Renal Physiology, 2020, 319, F178-F191.	2.7	4
14	Optimization of small RNA library preparation protocol from human urinary exosomes. Journal of Translational Medicine, 2020, 18, 132.	4.4	14
15	Circular RNAS: novel biomarkers of disease activity in systemic lupus erythematosus?. Clinical Science, 2019, 133, 1049-1052.	4.3	21
16	Urinary podocyte-associated molecules and albuminuria in hypertension. Journal of Hypertension, 2018, 36, 1712-1718.	0.5	9
17	Urinary levels of sirtuin-1 associated with disease activity in lupus nephritis. Clinical Science, 2018, 132, 569-579.	4.3	19
18	Urinary exosome miR-146a is a potential marker of albuminuria in essential hypertension. Journal of Translational Medicine, 2018, 16, 228.	4.4	58

#	Article	IF	CITATIONS
19	One-year follow-up of clinical, metabolic and oxidative stress profile of morbid obese patients after laparoscopic sleeve gastrectomy. 8-oxo-dG as a clinical marker. Redox Biology, 2017, 12, 389-402.	9.0	55
20	Are <i>IL18RAP < /i> gene polymorphisms associated with body mass regulation? A cross-sectional study. BMJ Open, 2017, 7, e017875.</i>	1.9	7
21	Extracellular Vesicles as Therapeutic Agents in Systemic Lupus Erythematosus. International Journal of Molecular Sciences, 2017, 18, 717.	4.1	49
22	Donor-derived exosomes: key in lung allograft rejection?. Annals of Translational Medicine, 2017, 5, 85-85.	1.7	1
23	Urinary dedifferentiated podocytes as a non-invasive biomarker of lupus nephritis. Nephrology Dialysis Transplantation, 2016, 31, 780-789.	0.7	36
24	Postprandial Changes in Chemokines Related to Early Atherosclerotic Processes in Familial Hypercholesterolemic Subjects: A Preliminary Study. Archives of Medical Research, 2016, 47, 33-39.	3.3	7
25	Increased Urinary Exosomal MicroRNAs in Patients with Systemic Lupus Erythematosus. PLoS ONE, 2015, 10, e0138618.	2.5	131
26	Extracellular Vesicles as Biomarkers of Systemic Lupus Erythematosus. Disease Markers, 2015, 2015, 1-7.	1.3	39
27	Enhanced reduction in oxidative stress and altered glutathione and thioredoxin system response to unsaturated fatty acid load in familial hypercholesterolemia. Clinical Biochemistry, 2014, 47, 291-297.	1.9	5
28	Impact of Cardiovascular Risk Factors and Inflammatory Status on Urinary 8-OHdG in Essential Hypertension. American Journal of Hypertension, 2012, 25, 236-242.	2.0	24
29	Impact of glomerular filtration rate on urinary BNP and NT-proBNP levels in heart failure. Peptides, 2012, 33, 354-358.	2.4	12
30	Expression of B-type natriuretic peptide forms in ischemic human hearts. International Journal of Cardiology, 2012, 158, 199-204.	1.7	7
31	Influence of heart failure on nucleolar organization and protein expression in human hearts. Biochemical and Biophysical Research Communications, 2012, 418, 222-228.	2.1	16
32	Cardiac protein changes in ischaemic and dilated cardiomyopathy: a proteomic study of human left ventricular tissue. Journal of Cellular and Molecular Medicine, 2012, 16, 2471-2486.	3.6	31
33	Differences in MEF2 and NFAT Transcriptional Pathways According to Human Heart Failure Aetiology. PLoS ONE, 2012, 7, e30915.	2.5	24
34	Variability of NT-proBNP and Its Relationship with Inflammatory Status in Patients with Stable Essential Hypertension: A 2-Year Follow-Up Study. PLoS ONE, 2012, 7, e31189.	2.5	10
35	Influence of heart failure on nucleocytoplasmic transport in human cardiomyocytes. Cardiovascular Research, 2010, 85, 464-472.	3.8	33
36	Urinary NT-proBNP: A Valuable Marker in the Assessment of Patients With Essential Hypertension. Revista Espanola De Cardiologia (English Ed), 2009, 62, 1322-1325.	0.6	3

#	Article	IF	CITATIONS
37	Inflammatory Activation and Left Ventricular Mass in Essential Hypertension. American Journal of Hypertension, 2009, 22, 444-450.	2.0	35
38	Obese and Nonobese Patients With Essential Hypertension Show Similar N-terminal proBNP Plasma Levels. American Journal of Hypertension, 2008, 21, 820-825.	2.0	9
39	Variability of NT-proBNP plasma and urine levels in patients with stable heart failure: a 2-year follow-up study. Heart, 2007, 93, 957-962.	2.9	28
40	Urinary B-Type Natriuretic Peptide Levels in the Diagnosis and Prognosis of Heart Failure. Journal of Cardiac Failure, 2007, 13, 549-555.	1.7	22
41	Urinary NT-proBNP Level: Relationship With Ventricular Function Parameters in Heart Failure. Revista Espanola De Cardiologia (English Ed), 2007, 60, 510-516.	0.6	2
42	Interleukin-4 and Cardiac Fibrosis in Patients With Heart Failure. Revista Espanola De Cardiologia (English Ed), 2007, 60, 777-780.	0.6	16
43	Maximum Longitudinal Relaxation Velocity of the Left Ventricle: Its Clinical Value and Relationship with NT-proBNP Plasma Levels in Heart Failure. Echocardiography, 2006, 23, 295-302.	0.9	5
44	Left ventricular cavity area reflects N-terminal pro-brain natriuretic peptide plasma levels in heart failurea T. European Journal of Echocardiography, 2006, 7, 45-52.	2.3	12
45	Diagnostic and prognostic value of urine NT-proBNP levels in heart failure patients. European Journal of Heart Failure, 2006, 8, 621-627.	7.1	49
46	Obese subjects with heart failure have lower Nâ€terminal proâ€brain natriuretic peptide plasma levels irrespective of aetiology. European Journal of Heart Failure, 2005, 7, 1168-1170.	7.1	45
47	Soluble TNF- \hat{l}_{\pm} and interleukin-6 receptors in the urine of heart failure patients. Their clinical value and relationship with plasma levels. European Journal of Heart Failure, 2004, 6, 877-882.	7.1	12
48	NT-proBNP Levels and Hypertension. Their Importance in the Diagnosis of Heart Failure. Revista Espanola De Cardiologia (English Ed), 2004, 57, 396-402.	0.6	7
49	Ventricular hypertrophy increases NT-proBNP in subjects with and without hypertension. International Journal of Cardiology, 2004, 96, 265-271.	1.7	19
50	Hipertensión y valores de NT-proBNP. Su importancia en el diagnóstico de insuficiencia cardÃaca. Revista Espanola De Cardiologia, 2004, 57, 396-402.	1.2	7
51	NT-proBNP y desplazamiento del plano auriculoventricular. Relación e implicaciones diagnósticas. Revista Espanola De Cardiologia, 2003, 56, 1043-1049.	1.2	3