Paula Soares

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2206707/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>TERT</i> Promoter Mutational Status in the Management of Cutaneous Melanoma: Comparison with Sentinel Lymph Node Biopsy. Dermatology, 2022, 238, 507-516.	2.1	0
2	Subacute and low-dose tributyltin exposure disturbs the mammalian hypothalamus-pituitary-thyroid axis in a sex-dependent manner. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2022, 254, 109279.	2.6	6
3	The Multifaceted Profile of Thyroid Disease in the Background of DICER1 Germline and Somatic Mutations: Then, Now and Future Perspectives. Journal of Molecular Pathology, 2022, 3, 1-14.	1.2	0
4	Performance of the Bethesda System for Reporting Thyroid Cytology in Multi-Institutional Large Cohort of Pediatric Thyroid Nodules: A Detailed Analysis. Diagnostics, 2022, 12, 179.	2.6	9
5	Post-COVID-19 Condition: Where Are We Now?. Life, 2022, 12, 517.	2.4	25
6	Connexin Expression in Pituitary Adenomas and the Effects of Overexpression of Connexin 43 in Pituitary Tumor Cell Lines. Genes, 2022, 13, 674.	2.4	2
7	Aggressive nonfunctioning pituitary neuroendocrine tumors. Brain Tumor Pathology, 2022, 39, 183-199.	1.7	5
8	Environmentally relevant dose of the endocrine disruptor tributyltin disturbs redox balance in female thyroid gland. Molecular and Cellular Endocrinology, 2022, 553, 111689.	3.2	6
9	MOHS micrographic surgery for head and neck nonmelanoma skin cancer: An approach for ENT surgeons. Dermatologic Therapy, 2021, 34, e14661.	1.7	3
10	Correlation of molecular data with histopathological and clinical features in a series of 66 patients with medullary thyroid carcinoma. Journal of Endocrinological Investigation, 2021, 44, 1837-1846.	3.3	7
11	The role of c-Met and VEGFR2 in glioblastoma resistance to bevacizumab. Scientific Reports, 2021, 11, 6067.	3.3	17
12	Molecular Pathology of Non-familial Follicular Epithelial–Derived Thyroid Cancer in Adults: From RAS/BRAF-like Tumor Designations to Molecular Risk Stratification. Endocrine Pathology, 2021, 32, 44-62.	9.0	24
13	Integrated Metabolomics and Transcriptomics Analysis of Monolayer and Neurospheres from Established Glioblastoma Cell Lines. Cancers, 2021, 13, 1327.	3.7	5
14	Genetic Determinants for Prediction of Outcome of Patients with Papillary Thyroid Carcinoma. Cancers, 2021, 13, 2048.	3.7	16
15	Epigenomics in Hurthle Cell Neoplasms: Filling in the Gaps Towards Clinical Application. Frontiers in Endocrinology, 2021, 12, 674666.	3.5	5
16	Combinatorial Therapies to Overcome BRAF/MEK Inhibitors Resistance in Melanoma Cells: An in vitro Study. Journal of Experimental Pharmacology, 2021, Volume 13, 521-535.	3.2	5
17	Genetic Alterations and Clinical Features in Brazilian Patients With Pheochromocytomas and Paragangliomas. Journal of the Endocrine Society, 2021, 5, A83-A84.	0.2	0
18	TERTp mutations and p53 expression in head and neck cutaneous basal cell carcinomas with different aggressive features. Scientific Reports, 2021, 11, 10395.	3.3	2

#	Article	IF	CITATIONS
19	Indeterminate thyroid cytology: detecting malignancy using analysis of nuclear images. Endocrine Connections, 2021, 10, 707-714.	1.9	3
20	<i>DGCR8</i> microprocessor defect and deregulation of its expression in thyroid cancer. European Journal of Public Health, 2021, 31, .	0.3	0
21	LRP1B: A Giant Lost in Cancer Translation. Pharmaceuticals, 2021, 14, 836.	3.8	25
22	Ubiquitin-Specific Proteases: Players in Cancer Cellular Processes. Pharmaceuticals, 2021, 14, 848.	3.8	31
23	LRP1B Expression as a Putative Predictor of Response to Pegylated Liposomal Doxorubicin Treatment in Ovarian Cancer. Pathobiology, 2021, 88, 400-411.	3.8	7
24	Variants of Papillary Thyroid Carcinoma: An Algorithmic Cytomorphology-Based Approach to Cytology Specimens. Acta Cytologica, 2020, 64, 288-298.	1.3	11
25	Cancer incidence after childhood irradiation for tinea capitis in a Portuguese cohort. British Journal of Radiology, 2020, 93, 20180677.	2.2	4
26	Relevant dose of the environmental contaminant, tributyltin, promotes histomorphological changes in the thyroid gland of male rats. Molecular and Cellular Endocrinology, 2020, 502, 110677.	3.2	6
27	Clinical Validation of a Urine Test (Uromonitor-V2®) for the Surveillance of Non-Muscle-Invasive Bladder Cancer Patients. Diagnostics, 2020, 10, 745.	2.6	25
28	Comprehensive Assessment of TERT mRNA Expression across a Large Cohort of Benign and Malignant Thyroid Tumours. Cancers, 2020, 12, 1846.	3.7	11
29	S616-p-DRP1 associates with locally invasive behavior of follicular cell-derived thyroid carcinoma. Endocrine, 2020, 73, 85-97.	2.3	3
30	Analyzing the Role of DICER1 Germline Variations in Papillary Thyroid Carcinoma. European Thyroid Journal, 2020, 9, 296-303.	2.4	16
31	Metabolic modulation combined with mTOR pathway inhibition may overcame cutaneous melanoma resistance to MAPK inhibitors treatment. European Journal of Cancer, 2020, 138, S23.	2.8	0
32	Molecular Aspects of Thyroid Calcification. International Journal of Molecular Sciences, 2020, 21, 7718.	4.1	24
33	Predictive Biomarkers and Patient Outcome in Platinum-Resistant (PLD-Treated) Ovarian Cancer. Diagnostics, 2020, 10, 525.	2.6	4
34	Review of the current information on erectile dysfunction in hypertensive males with 40 years of age or older. Porto Biomedical Journal, 2020, 5, e107.	1.0	1
35	Clinicopathological Features as Prognostic Predictors of Poor Outcome in Papillary Thyroid Carcinoma. Cancers, 2020, 12, 3186.	3.7	20
36	A 30-Year Long-Term Experience in Appendix Neuroendocrine Neoplasms—Granting a Positive Outcome. Cancers, 2020, 12, 1357.	3.7	4

#	Article	IF	CITATIONS
37	Reliable blood cancer cells' telomere length evaluation by qPCR. Cancer Medicine, 2020, 9, 3153-3162.	2.8	13
38	Prognostic Significance of RAS Mutations and P53 Expression in Cutaneous Squamous Cell Carcinomas. Genes, 2020, 11, 751.	2.4	13
39	TERT Promoter Mutation as a Potential Predictive Biomarker in BCG-Treated Bladder Cancer Patients. International Journal of Molecular Sciences, 2020, 21, 947.	4.1	19
40	Biomarkers for Bladder Cancer Diagnosis and Surveillance: A Comprehensive Review. Diagnostics, 2020, 10, 39.	2.6	74
41	Evaluation of the role of mitochondria in the non-targeted effects of ionizing radiation using cybrid cellular models. Scientific Reports, 2020, 10, 6131.	3.3	8
42	Head and neck cutaneous basal cell carcinoma: what should the otorhinolaryngology head and neck surgeon care about?. Acta Otorhinolaryngologica Italica, 2020, 40, 5-18.	1.5	8
43	Follicular Lesions with Papillary Nuclear Characteristics: Differences in Chromatin Detected by Computerized Image Analysis. Archives of Endocrinology and Metabolism, 2020, 64, 630-635.	0.6	2
44	Interaction of Genetic Variations inNFE2L2andSELENOSModulates the Risk of Hashimoto's Thyroiditis. Thyroid, 2019, 29, 1302-1315.	4.5	12
45	Gastroenteropancreatic Neuroendocrine Neoplasia Characterization in Portugal: Results from the NETs Study Group of the Portuguese Society of Endocrinology, Diabetes and Metabolism. International Journal of Endocrinology, 2019, 2019, 1-10.	1.5	4
46	Scalp basal cell carcinoma: A different entity?. Dermatologic Therapy, 2019, 32, e12828.	1.7	7
47	Characterization and antitumor activity of the extracellular carbohydrate polymer from the cyanobacterium Synechocystis ΔsigF mutant. International Journal of Biological Macromolecules, 2019, 136, 1219-1227.	7.5	17
48	Differential Expression of HMGA1 and HMGA2 in pituitary neuroendocrine tumors. Molecular and Cellular Endocrinology, 2019, 490, 80-87.	3.2	6
49	Oncocytic thyroid neoplasms: from histology to molecular biology. Diagnostic Histopathology, 2019, 25, 154-165.	0.4	8
50	Validation of a Novel, Sensitive, and Specific Urine-Based Test for Recurrence Surveillance of Patients With Non-Muscle-Invasive Bladder Cancer in a Comprehensive Multicenter Study. Frontiers in Genetics, 2019, 10, 1237.	2.3	43
51	TERT promoter mutations are associated with poor prognosis in cutaneous squamous cell carcinoma. Journal of the American Academy of Dermatology, 2019, 80, 660-669.e6.	1.2	27
52	"The other side of the coin― understanding noninvasive follicular tumor with papillary-like nuclear features in unifocal and multifocal settings. Human Pathology, 2019, 86, 136-142.	2.0	24
53	Genomic and transcriptomic characterization of the mitochondrial-rich oncocytic phenotype on a thyroid carcinoma background. Mitochondrion, 2019, 46, 123-133.	3.4	10
54	MON-374 Composite Pheochromocytoma: Look and You Shall Find Journal of the Endocrine Society, 2019, 3, .	0.2	0

#	Article	IF	CITATIONS
55	NIS expression in thyroid tumors, relation with prognosis clinicopathological and molecular features. Endocrine Connections, 2018, 7, 78-90.	1.9	56
56	Multinodular Goiter Progression Toward Malignancy in a Case of DICER1 Syndrome. American Journal of Clinical Pathology, 2018, 149, 379-386.	0.7	20
57	Frontiers in endocrine disruption: Impacts of organotin on the hypothalamus-pituitary-thyroid axis. Molecular and Cellular Endocrinology, 2018, 460, 246-257.	3.2	48
58	Age-Associated Mortality Risk in Papillary Thyroid Cancer: Does BRAF Make a Real Difference?. Journal of Clinical Oncology, 2018, 36, 1455-1456.	1.6	3
59	OPNa Overexpression Is Associated with Matrix Calcification in Thyroid Cancer Cell Lines. International Journal of Molecular Sciences, 2018, 19, 2990.	4.1	16
60	Selenium and Selenoproteins in Immune Mediated Thyroid Disorders. Diagnostics, 2018, 8, 70.	2.6	33
61	Cribriform-morular variant of thyroid carcinoma: a neoplasm with distinctive phenotype associated with the activation of the WNT/I²-catenin pathway. Modern Pathology, 2018, 31, 1168-1179.	5.5	54
62	ls Low-Dose Radiation Exposure a Risk Factor for Atherosclerotic Disease?. Radiation Research, 2018, 189, 418-424.	1.5	10
63	Melanoma treatment in review. ImmunoTargets and Therapy, 2018, Volume 7, 35-49.	5.8	483
64	Tributyltin and Zebrafish: Swimming in Dangerous Water. Frontiers in Endocrinology, 2018, 9, 152.	3.5	10
65	Dynamin-Related Protein 1 at the Crossroads of Cancer. Genes, 2018, 9, 115.	2.4	67
66	Telomere Maintenance Mechanisms in Cancer. Genes, 2018, 9, 241.	2.4	91
67	Follicular thyroid lesions: is there a discriminatory potential in the computerized nuclear analysis?. Endocrine Connections, 2018, 7, 907-913.	1.9	5
68	Unraveling molecular targets of bisphenol A and S in the thyroid gland. Environmental Science and Pollution Research, 2018, 25, 26916-26926.	5.3	19
69	CRABP1, C1QL1 and LCN2 are biomarkers of differentiated thyroid carcinoma, and predict extrathyroidal extension. BMC Cancer, 2018, 18, 68.	2.6	26
70	Liposomal therapies in oncology: does one size fit all?. Cancer Chemotherapy and Pharmacology, 2018, 82, 741-755.	2.3	18
71	mTOR Pathway in Papillary Thyroid Carcinoma: Different Contributions of mTORC1 and mTORC2 Complexes for Tumor Behavior and SLC5A5 mRNA Expression. International Journal of Molecular Sciences, 2018, 19, 1448.	4.1	27
72	The environmental contaminant tributyltin leads to abnormalities in different levels of the hypothalamus-pituitary-thyroid axis in female rats. Environmental Pollution, 2018, 241, 636-645.	7.5	25

IF # ARTICLE CITATIONS TERTp mutation is associated with a shorter progression free survival in patients with aggressive 2.3 histology subtypes of follicular-cell derived thyroid carcinoma. Endocrine, 2018, 61, 489-498. Rare Familial Tumours., 2018, , 57-77. 74 4 The genetics of cutaneous squamous cell carcinogenesis. European Journal of Dermatology, 2018, 28, 597-605. Tendências do carcinoma espinocelular cutâneo no Hospital de Gaia (2004-20013). Journal of the 76 0.0 3 Portuguese Society of Dermatology and Venereology, 2018, 76, 279-286. Other Rare Tumours and Tumour-Like Lesions., 2018,, 79-105. 78 Rare Papillary Thyroid Carcinomas., 2018, , 5-25. 1 79 Small Cell Tumours. , 2018, , 45-56. Therapeutic Options., 2018, , 107-110. 80 0 Rare Follicular Tumours., 2018, , 27-44. Abstract 180: OPNa variant expression is associated with matrix mineralization in thyroid cancer cell 82 0.9 1 lines. Cancer Research, 2018, 78, 180-180. Editorial on "The genomic landscape of TERT promoter wildtype-IDH wildtype glioblastoma― Translational Cancer Research, 2018, 7, S762-S765. TERT biology and function in cancer: beyond immortalisation. Journal of Molecular Endocrinology, 2017, 58, R129-R146. 84 2.5 68 The role of ablative treatment in differentiated thyroid cancer management. Expert Review of 2.4 Endocrinology and Metabolism, 2017, 12, 109-116. Hobnail Variant of Papillary Thyroid Carcinoma. American Journal of Surgical Pathology, 2017, 41, 86 3.7 38 854-860. TERT, BRAF, and NRAS in Primary Thyroid Cancer and Metastatic Disease. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 1898-1907. Inhibitory Effects of Antagonists of Growth Hormone-Releasing Hormone (GHRH) in Thyroid Cancer. 88 4.9 14 Hormones and Cancer, 2017, 8, 314-324. Etiopathogenesis of oncocytomas. Seminars in Cancer Biology, 2017, 47, 82-94. 9.6 TERT promoter mutations: a genetic signature of benign and malignant thyroid tumours occurring in 90 3.7 9 the context of tinea capitis irradiation. European Journal of Endocrinology, 2017, 176, 49-55.

#	Article	IF	CITATIONS
91	Telomerase and N-Cadherin Differential Importance in Adrenocortical Cancers and Adenomas. Journal of Cellular Biochemistry, 2017, 118, 2064-2071.	2.6	5
92	SDHD promoter mutations are rare events in cutaneous melanomas but SDHD protein expression is downregulated in advanced cutaneous melanoma. PLoS ONE, 2017, 12, e0180392.	2.5	2
93	GLUT1, MCT1/4 and CD147 overexpression supports the metabolic reprogramming in papillary renal cell carcinoma. Histology and Histopathology, 2017, 32, 1029-1040.	0.7	14
94	The Genetics of Papillary Microcarcinomas of the Thyroid: Diagnostic and Prognostic Implications. Current Genomics, 2017, 18, 244-254.	1.6	25
95	Calcitonin receptor expression in medullary thyroid carcinoma. PeerJ, 2017, 5, e3778.	2.0	4
96	Telomeres in Cancer. , 2017, , 161-170.		0
97	<i>TERT</i> Promoter Mutations in Soft Tissue Sarcomas. International Journal of Biological Markers, 2016, 31, 62-67.	1.8	14
98	Telomerase Activation in Hematological Malignancies. Genes, 2016, 7, 61.	2.4	25
99	IL6-174 G>C Polymorphism (rs1800795) Association with Late Effects of Low Dose Radiation Exposure in the Portuguese Tinea Capitis Cohort. PLoS ONE, 2016, 11, e0163474.	2.5	5
100	The Role of ATRX in the Alternative Lengthening of Telomeres (ALT) Phenotype. Genes, 2016, 7, 66.	2.4	70
101	Molecular profiling, including TERT promoter mutations, of acral lentiginous melanomas. Melanoma Research, 2016, 26, 93-99.	1.2	49
102	Molecular Markers Involved in Tumorigenesis of Thyroid Carcinoma: Focus on Aggressive Histotypes. Cytogenetic and Genome Research, 2016, 150, 194-207.	1.1	49
103	pmTOR is a marker of aggressiveness in papillary thyroid carcinomas. Surgery, 2016, 160, 1582-1590.	1.9	7
104	TERT promoter mutations in pancreatic endocrine tumours are rare and mainly found in tumours from patients with hereditary syndromes. Scientific Reports, 2016, 6, 29714.	3.3	13
105	The prognostic impact of <i>TERT</i> promoter mutations in glioblastomas is modified by the rs2853669 single nucleotide polymorphism. International Journal of Cancer, 2016, 139, 414-423.	5.1	50
106	Osteopontin expression is correlated with differentiation and good prognosis in medullary thyroid carcinoma. European Journal of Endocrinology, 2016, 174, 551-561.	3.7	21
107	Differential Clinicopathological Risk and Prognosis of Major Papillary Thyroid Cancer Variants. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 264-274.	3.6	179
108	Obesity Is Associated With Low NAD ⁺ /SIRT Pathway Expression in Adipose Tissue of BMI-Discordant Monozygotic Twins. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 275-283.	3.6	120

#	Article	IF	CITATIONS
109	Hotspot TERT promoter mutations are rare events in testicular germ cell tumors. Tumor Biology, 2016, 37, 4901-4907.	1.8	13
110	ENDOCRINE TUMOURS: Genetic predictors of thyroid cancer outcome. European Journal of Endocrinology, 2016, 174, R117-R126.	3.7	64
111	Osteopontin-a splice variant is overexpressed in papillary thyroid carcinoma and modulates invasive behavior. Oncotarget, 2016, 7, 52003-52016.	1.8	24
112	Thyroid and Parathyroid Glands. , 2016, , 613-671.		0
113	Poorly differentiated and undifferentiated thyroid carcinomas. Turk Patoloji Dergisi, 2015, 31 Suppl 1, 48-59.	0.3	16
114	Overexpression of pyruvate dehydrogenase kinase supports dichloroacetate as a candidate for cutaneous melanoma therapy. Expert Opinion on Therapeutic Targets, 2015, 19, 733-745.	3.4	22
115	OXPHOS dysfunction regulates integrin-Â1 modifications and enhances cell motility and migration. Human Molecular Genetics, 2015, 24, 1977-1990.	2.9	35
116	RE: TERT Promoter Mutation Status as an Independent Prognostic Factor in Cutaneous Melanoma. Journal of the National Cancer Institute, 2015, 107, djv049-djv049.	6.3	3
117	Coexistence of <i>TERT</i> Promoter and <i>BRAF</i> Mutations in Papillary Thyroid Carcinoma: Added Value in Patient Prognosis?. Journal of Clinical Oncology, 2015, 33, 667-668.	1.6	36
118	RAF-1 promotes survival of thyroid cancer cells harboring RET/PTC1 rearrangement independently of ERK activation. Molecular and Cellular Endocrinology, 2015, 415, 64-75.	3.2	5
119	Low frequency of TERT promoter mutations in gastrointestinal stromal tumors (GISTs). European Journal of Human Genetics, 2015, 23, 877-879.	2.8	27
120	Mitochondrial Dynamics Protein Drp1 Is Overexpressed in Oncocytic Thyroid Tumors and Regulates Cancer Cell Migration. PLoS ONE, 2015, 10, e0122308.	2.5	151
121	Hashimoto's Thyroiditis in Adolescents. US Endocrinology, 2015, 11, 85.	0.3	7
122	Differentiated thyroid cancer in patients with resistance to thyroid hormone syndrome. A novel case and a review of the literature. Frontiers in Molecular Biosciences, 2014, 1, 10.	3.5	11
123	LRP1B (low density lipoprotein receptor-related protein 1B). Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2014, , .	0.1	3
124	Thyroid and parathyroid tumours in patients submitted to X-ray scalp epilation during the tinea capitis eradication campaign in the North of Portugal (1950–1963). Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2014, 465, 445-452.	2.8	10
125	C-Cell-Derived Calcitonin-Free Neuroendocrine Carcinoma of the Thyroid. International Journal of Surgical Pathology, 2014, 22, 530-535.	0.8	32
126	Primary Squamous Cell Carcinoma of the Thyroid Diagnosed as Anaplastic Carcinoma: Failure in Fine-Needle Aspiration Cytology?. Case Reports in Pathology, 2014, 2014, 1-4.	0.3	18

#	Article	IF	CITATIONS
127	Prognostic biomarkers in thyroid cancer. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2014, 464, 333-346.	2.8	49
128	Mitochondrial D310 D-Loop instability and histological subtypes in radiation-induced cutaneous basal cell carcinomas. Journal of Dermatological Science, 2014, 73, 31-39.	1.9	17
129	A Polymorphism in the Promoter Region of the Selenoprotein S Gene (<i>SEPS1</i>) Contributes to Hashimoto's Thyroiditis Susceptibility. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E719-E723.	3.6	63
130	Papillary Thyroid Microcarcinoma. International Journal of Surgical Pathology, 2014, 22, 113-119.	0.8	41
131	mTOR activation in medullary thyroid carcinoma with RAS mutation. European Journal of Endocrinology, 2014, 171, 633-640.	3.7	31
132	Telomerase promoter mutations in cancer: an emerging molecular biomarker?. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2014, 465, 119-133.	2.8	104
133	Increased lymphangiogenesis in Riedel thyroiditis (Immunoglobulin G4-related thyroid disease). Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2014, 465, 359-364.	2.8	11
134	TERT Promoter Mutations Are a Major Indicator of Poor Outcome in Differentiated Thyroid Carcinomas. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E754-E765.	3.6	451
135	Neonatal extracorporeal membrane oxygenation: Initial experience of Hospital de São João. Revista Portuguesa De Pneumologia, 2014, 20, 336-340.	0.7	2
136	TERT Promoter Mutations in Skin Cancer: The Effects of Sun Exposure and X-Irradiation. Journal of Investigative Dermatology, 2014, 134, 2251-2257.	0.7	105
137	Polymorphisms in the TNFA and IL6 Genes Represent Risk Factors for Autoimmune Thyroid Disease. PLoS ONE, 2014, 9, e105492.	2.5	33
138	Frequency of TERT promoter mutations in human cancers. Nature Communications, 2013, 4, 2185.	12.8	740
139	Molecular alterations and expression of succinate dehydrogenase complex in wild-type KIT/PDGFRA/BRAF gastrointestinal stromal tumors. European Journal of Human Genetics, 2013, 21, 503-510.	2.8	15
140	Nrf2 Is Commonly Activated in Papillary Thyroid Carcinoma, and It Controls Antioxidant Transcriptional Responses and Viability of Cancer Cells. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E1422-E1427.	3.6	29
141	Stimulated Thyroglobulin at Recombinant Human TSH-Aided Ablation Predicts Disease-free Status One Year Later. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 4364-4372.	3.6	38
142	A founder SDHB mutation in Portuguese paraganglioma patients. Endocrine-Related Cancer, 2013, 20, L23-L26.	3.1	12
143	MEN1 intragenic deletions may represent the most prevalent somatic event in sporadic primary hyperparathyroidism. European Journal of Endocrinology, 2013, 168, 119-128.	3.7	28
144	Genetic alterations in thyroid tumors from patients irradiated in childhood for tinea capitis treatment. European Journal of Endocrinology, 2013, 169, 673-679.	3.7	9

#	Article	IF	CITATIONS
145	Cribriform-Morular Variant of Papillary Thyroid Carcinoma Displaying Poorly Differentiated Features. International Journal of Surgical Pathology, 2013, 21, 379-389.	0.8	34
146	GNAQ and BRAF mutations show differential activation of the mTOR pathway in human transformed cells. PeerJ, 2013, 1, e104.	2.0	12
147	Abstract C118: TERT promoter mutations in human gliomas , 2013, , .		0
148	Absence of theBRAFand theGRIM-19Mutations in Oncocytic (Hürthle Cell) Solid Cell Nests of the Thyroid. American Journal of Clinical Pathology, 2012, 137, 612-618.	0.7	17
149	STAT3 negatively regulates thyroid tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2361-70.	7.1	110
150	A Clear Cell Renal Cell Carcinoma Inhibiting the Response to Intravitreal Antivascular Endothelial Growth Factor Therapy in Wet Age-Related Macular Disease. Case Reports in Ophthalmology, 2012, 3, 443-451.	0.7	2
151	CDX2 Expression in Some Variants of Papillary Thyroid Carcinoma. American Journal of Clinical Pathology, 2012, 138, 907-910.	0.7	10
152	1121 BRAF Mutations in Thyroid Carcinomas Following Childhood Scalp Irradiation. European Journal of Cancer, 2012, 48, S270.	2.8	0
153	The biology and the genetics of Hürthle cell tumors of the thyroid. Endocrine-Related Cancer, 2012, 19, R131-R147.	3.1	76
154	Survey of 548 oncogenic fusion transcripts in thyroid tumors supports the importance of the already established thyroid fusions genes. Genes Chromosomes and Cancer, 2012, 51, 1154-1164.	2.8	20
155	mTOR Pathway Overactivation in BRAF Mutated Papillary Thyroid Carcinoma. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E1139-E1149.	3.6	66
156	The mTOR Signalling Pathway in Human Cancer. International Journal of Molecular Sciences, 2012, 13, 1886-1918.	4.1	662
157	Head and neck basal cell carcinoma prevalence in individuals submitted to childhood X-ray epilation for tinea capitis treatment. European Journal of Dermatology, 2012, 22, 225-230.	0.6	26
158	Paraganglioma of seminal vesicle and chromophobe renal cell carcinoma: a case report and literature review. Sao Paulo Medical Journal, 2012, 130, 57-60.	0.9	14
159	Insights into melanoma: targeting the mTOR pathway for therapeutics. Expert Opinion on Therapeutic Targets, 2012, 16, 689-705.	3.4	34
160	A novel germline SDHB mutation in a gastrointestinal stromal tumor patient without bona fide features of the Carney–Stratakis dyad. Familial Cancer, 2012, 11, 189-194.	1.9	19
161	TGF-beta/Smad pathway and BRAF mutation play different roles in circumscribed and infiltrative papillary thyroid carcinoma. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2012, 460, 587-600.	2.8	42
162	<i>RET/PTC</i> rearrangement is prevalent in follicular Hürthle cell carcinomas. Histopathology, 2012, 61, 833-843.	2.9	42

#	Article	IF	CITATIONS
163	Melanocytic Tumour in a Black Sheep never exposed to Ultraviolet Radiation. Journal of Comparative Pathology, 2012, 146, 160-164.	0.4	4
164	AZD1480 Blocks Growth and Tumorigenesis of RET- Activated Thyroid Cancer Cell Lines. PLoS ONE, 2012, 7, e46869.	2.5	20
165	Thyroid hormone as a regulator of tumor induced angiogenesis. Cancer Letters, 2011, 301, 119-126.	7.2	56
166	GRIM-19 function in cancer development. Mitochondrion, 2011, 11, 693-699.	3.4	30
167	Orthovanadate-induced cell death in RET/PTC1-harboring cancer cells involves the activation of caspases and altered signaling through PI3K/Akt/mTOR. Life Sciences, 2011, 89, 371-377.	4.3	33
168	Head and neck lesions in a cohort irradiated in childhood for tinea capitis treatment. Lancet Infectious Diseases, The, 2011, 11, 163-164.	9.1	14
169	mTOR pathway activation in cutaneous melanoma is associated with poorer prognosis characteristics. Pigment Cell and Melanoma Research, 2011, 24, 254-257.	3.3	33
170	Chromosomal, epigenetic and microRNA-mediated inactivation of LRP1B, a modulator of the extracellular environment of thyroid cancer cells. Oncogene, 2011, 30, 1302-1317.	5.9	87
171	Tumor-in-Tumor of the Thyroid With Basaloid Differentiation: A Lesion With a Solid Cell Nest Neoplastic Component?. International Journal of Surgical Pathology, 2011, 19, 276-280.	0.8	18
172	Involvement of p53 in cell death following cell cycle arrest and mitotic catastrophe induced by rotenone. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 492-499.	4.1	36
173	Impact of <i>EGFR</i> Genetic Variants on Glioma Risk and Patient Outcome. Cancer Epidemiology Biomarkers and Prevention, 2011, 20, 2610-2617.	2.5	37
174	The preeminence of growth pattern and invasiveness and the limited influence of BRAF and RAS mutations in the occurrence of papillary thyroid carcinoma lymph node metastases. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2011, 459, 265-276.	2.8	47
175	Intratumoural lymph vessel density is related to presence of lymph node metastases and separates encapsulated from infiltrative papillary thyroid carcinoma. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2011, 459, 595-605.	2.8	21
176	Synergistic growth inhibition of cancer cells harboring the RET/PTC1 oncogene by staurosporine and rotenone involves enhanced cell death. Journal of Biosciences, 2011, 36, 639-648.	1.1	10
177	EBV interferes with the sensitivity of Burkitt lymphoma Akata cells to etoposide. Journal of Cellular Biochemistry, 2011, 112, 200-210.	2.6	7
178	Molecular Alterations in Sporadic Primary Hyperparathyroidism. Genetics Research International, 2011, 2011, 1-7.	2.0	9
179	How to Treat a Signal? Current Basis for RET-Genotype-Oriented Choice of Kinase Inhibitors for the Treatment of Medullary Thyroid Cancer. Journal of Thyroid Research, 2011, 2011, 1-10.	1.3	17
180	In vitro transforming potential, intracellular signaling properties, and sensitivity to a kinase inhibitor (sorafenib) of RET proto-oncogene variants Glu511Lys, Ser649Leu, and Arg886Trp. Endocrine-Related Cancer, 2011, 18, 401-412.	3.1	11

#	Article	IF	CITATIONS
181	Analysis of GNAQ mutations, proliferation and MAPK pathway activation in uveal melanomas. British Journal of Ophthalmology, 2011, 95, 715-719.	3.9	33
182	Small papillary thyroid cancers—is BRAF of prognostic value?. Nature Reviews Endocrinology, 2011, 7, 9-10.	9.6	19
183	Genetic Alterations in Poorly Differentiated and Undifferentiated Thyroid Carcinomas. Current Genomics, 2011, 12, 609-617.	1.6	71
184	Abstract 1075: STAT3 signaling in thyroid cancer. , 2011, , .		0
185	Evaluation of the mTOR pathway in ocular (uvea and conjunctiva) melanoma. Melanoma Research, 2010, 20, 107-117.	1.2	67
186	Multicentre validation study of nucleic acids extraction from FFPE tissues. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2010, 457, 309-317.	2.8	93
187	Alopecia in women submitted to childhood X-ray epilation for tinea capitis treatment. British Journal of Dermatology, 2010, 163, 643-644.	1.5	7
188	Molecular Pathology of Thyroid Tumors: Diagnostic and Prognostic Relevance. International Journal of Surgical Pathology, 2010, 18, 209-212.	0.8	6
189	Identification of a paired box gene 8–peroxisome proliferator-activated receptor gamma (PAX8–PPARγ) rearrangement mosaicism in a patient with an autonomous functioning follicular thyroid carcinoma bearing an activating mutation in the TSH receptor. Endocrine-Related Cancer, 2010, 17, 599-610.	3.1	15
190	Hot Topics in Papillary Thyroid Carcinoma. International Journal of Surgical Pathology, 2010, 18, 190-193.	0.8	1
191	Review Article: The Familial Counterparts of Follicular Cell—Derived Thyroid Tumors. International Journal of Surgical Pathology, 2010, 18, 233-242.	0.8	7
192	Abstract 3138: Stat3 signaling in thyroid cancer. , 2010, , .		0
193	Cribriform-Morular Variant of Papillary Thyroid Carcinoma. American Journal of Clinical Pathology, 2009, 131, 134-142.	0.7	68
194	An assessment of the clonality of the components of canine mixed mammary tumours by mitochondrial DNA analysis. Veterinary Journal, 2009, 182, 269-274.	1.7	18
195	Proliferation and survival molecules implicated in the inhibition of BRAF pathway in thyroid cancer cells harbouring different genetic mutations. BMC Cancer, 2009, 9, 387.	2.6	24
196	Mitochondria and cancer. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2009, 454, 481-495.	2.8	46
197	A follicular variant of papillary thyroid carcinoma in struma ovarii. Case report with unique molecular alterations. Histopathology, 2009, 55, 482-487.	2.9	20
198	Is <i>BRAF</i> mutation screening useful for preoperative risk stratification in papillary thyroid cancer?. Future Oncology, 2009, 5, 1225-1229.	2.4	4

#	Article	IF	CITATIONS
199	Germline variation of the melanocortinâ€1 receptor does not explain shared risk for melanoma and thyroid cancer. Experimental Dermatology, 2009, 18, 548-552.	2.9	4
200	How molecular pathology is changing and will change the therapeutics of patients with follicular cell-derived thyroid cancer: Table 1. Journal of Clinical Pathology, 2009, 62, 414-421.	2.0	25
201	BRAF ^{V600E} mutation in papillary thyroid carcinoma: a potential target for therapy?. Expert Review of Endocrinology and Metabolism, 2009, 4, 467-480.	2.4	0
202	Mitochondria and Oncocytomas. , 2009, , 193-209.		3
203	Loss of heterozygosity at 19p13.2 and 2q21 in tumours from familial clusters of non-medullary thyroid carcinoma. Familial Cancer, 2008, 7, 141-149.	1.9	31
204	BRAF provides proliferation and survival signals in MSI colorectal carcinoma cells displaying <i>BRAF</i> ^{<i>V</i>600<i>E</i>} but not <i>KRAS</i> mutations. Journal of Pathology, 2008, 214, 320-327.	4.5	53
205	Acquisition of <i>BRAF</i> gene mutations is not a requirement for nodal metastasis of papillary thyroid carcinoma. Clinical Endocrinology, 2008, 69, 683-685.	2.4	27
206	Intragenic Mutations in Thyroid Cancer. Endocrinology and Metabolism Clinics of North America, 2008, 37, 333-362.	3.2	87
207	Follicular thyroid carcinoma with an unusual glomeruloid pattern of growth. Human Pathology, 2008, 39, 1540-1547.	2.0	15
208	Cyclic AMP Inhibits the Proliferation of Thyroid Carcinoma Cell Lines through Regulation of CDK4 Phosphorylation. Molecular Biology of the Cell, 2008, 19, 4814-4825.	2.1	45
209	GRIM-19 in Health and Disease. Advances in Anatomic Pathology, 2008, 15, 46-53.	4.3	20
210	Optimization of methods to assess mitochondrial DNA in archival paraffin-embedded tissues from mammary canine tumors. Jornal Brasileiro De Patologia E Medicina Laboratorial, 2008, 44, .	0.3	1
211	Thyroid hormone receptor β mutations in the â€~hot-spot region' are rare events in thyroid carcinomas. Journal of Endocrinology, 2007, 192, 83-86.	2.6	16
212	Molecular and Genotypic Characterization of Human Thyroid Follicular Cell Carcinoma–Derived Cell Lines. Thyroid, 2007, 17, 707-715.	4.5	81
213	Molecular genetics of papillary thyroid carcinoma: great expectations Arquivos Brasileiros De Endocrinologia E Metabologia, 2007, 51, 643-653.	1.3	28
214	A subset of colorectal carcinomas express c-KIT protein independently of BRAF and/or KRAS activation. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2007, 450, 619-626.	2.8	14
215	The p75 neurotrophin receptor is widely expressed in conventional papillary thyroid carcinoma. Human Pathology, 2006, 37, 562-568.	2.0	26
216	B-RAF mutations in the etiopathogenesis, diagnosis, and prognosis of thyroid carcinomas. Human Pathology, 2006, 37, 781-786.	2.0	72

#	Article	IF	CITATIONS
217	Occurrence of the Cys611Tyr mutation and a novel Arg886Trp substitution in the RET proto-oncogene in multiple endocrine neoplasia type 2 families and sporadic medullary thyroid carcinoma cases originating from the central region of Portugal. Clinical Endocrinology, 2006, 64, 659-666.	2.4	20
218	H-RAS 81 polymorphism is significantly associated with aneuploidy in follicular tumors of the thyroid. Oncogene, 2006, 25, 4620-4627.	5.9	34
219	Diagnostic Criteria in Well-Differentiated Thyroid Carcinomas. Endocrine Pathology, 2006, 17, 109-118.	9.0	31
220	<i>PAX8-PPAR</i> ^{ĵ3} Rearrangement Is Frequently Detected in the Follicular Variant of Papillary Thyroid Carcinoma. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 213-220.	3.6	242
221	Mutation analysis of B-RAF gene in human gliomas. Acta Neuropathologica, 2005, 109, 207-210.	7.7	85
222	Molecular pathology of well-differentiated thyroid carcinomas. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2005, 447, 787-793.	2.8	67
223	Type and prevalence of BRAF mutations are closely associated with papillary thyroid carcinoma histotype and patients' age but not with tumour aggressiveness. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2005, 446, 589-595.	2.8	242
224	Adenomas and follicular carcinomas of the thyroid display two major patterns of chromosomal changes. Journal of Pathology, 2005, 206, 305-311.	4.5	38
225	Cystic Tumor of the Atrioventricular Node of the Heart Appears to Be the Heart Equivalent of the Solid Cell Nests (Ultimobranchial Rests) of the Thyroid. American Journal of Clinical Pathology, 2005, 123, 369-375.	0.7	32
226	Somatic and germline mutation in GRIM-19, a dual function gene involved in mitochondrial metabolism and cell death, is linked to mitochondrion-rich (Hürthle cell) tumours of the thyroid. British Journal of Cancer, 2005, 92, 1892-1898.	6.4	191
227	Hürthle (Oncocytic) Cell Tumors of Thyroid: Etiopathogenesis, Diagnosis and Clinical Significance. International Journal of Surgical Pathology, 2005, 13, 29-35.	0.8	67
228	Mitochondrial D-Loop instability in thyroid tumours is not a marker of malignancy. Mitochondrion, 2005, 5, 333-340.	3.4	28
229	A stem cell role for thyroid solid cell nests. Human Pathology, 2005, 36, 590-591.	2.0	26
230	A new BRAF gene mutation detected in a case of a solid variant of papillary thyroid carcinoma. Human Pathology, 2005, 36, 694-697.	2.0	93
231	Reply to: Low prevalence of BRAF mutations in radiation-induced thyroid tumors in contrast to sporadic papillary carcinomas. Cancer Letters, 2005, 230, 149-150.	7.2	4
232	Cystic Tumor of the Atrioventricular Node of the Heart Appears to Be the Heart Equivalent of the Solid Cell Nests (Ultimobranchial Rests) of the Thyroid. American Journal of Clinical Pathology, 2005, 123, 369-375.	0.7	6
233	Mutated E-Cadherin: Genomic and Functional Characterization in Thyroid Cells from the KAT Family. Thyroid, 2004, 14, 902-909.	4.5	7
234	Telomerase expression and proliferative activity suggest a stem cell role for thyroid solid cell nests. Modern Pathology, 2004, 17, 819-826.	5.5	57

#	Article	IF	CITATIONS
235	Core I gene is overexpressed in Hürthle and non-Hürthle cell microfollicular adenomas and follicular carcinomas of the thyroid. BMC Cancer, 2004, 4, 12.	2.6	4
236	BRAF mutations typical of papillary thyroid carcinoma are more frequently detected in undifferentiated than in insular and insular-like poorly differentiated carcinomas. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2004, 444, 572-6.	2.8	108
237	BRAF mutations are associated with some histological types of papillary thyroid carcinoma. Journal of Pathology, 2004, 202, 247-251.	4.5	334
238	BRAFMutations Are Not a Major Event in Post-Chernobyl Childhood Thyroid Carcinomas. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 4267-4271.	3.6	171
239	Letter to the editor. Genes Chromosomes and Cancer, 2003, 36, 318-318.	2.8	5
240	Immunohistochemical study of heat shock proteins 27, 60 and 70 in the normal human adrenal and in adrenal tumors with suppressed ACTH production. Microscopy Research and Technique, 2003, 61, 315-323.	2.2	25
241	E-cadherin loss rather than β-catenin alterations is a common feature of poorly differentiated thyroid carcinomas. Histopathology, 2003, 42, 580-587.	2.9	84
242	BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene, 2003, 22, 4578-4580.	5.9	616
243	p63 Expression in Solid Cell Nests of the Thyroid: Further Evidence for a Stem Cell Origin. Modern Pathology, 2003, 16, 43-48.	5.5	106
244	Re: Lohrer,H.D., Hieber,L. and Zitzelsberger,H. (2002) Differential mutation frequency in mitochondrial DNA from thyroid tumours. Carcinogenesis, 23, 1577-1582. Carcinogenesis, 2003, 24, 1155-1155.	2.8	0
245	Vascular Invasion in Thyroid and Gastric Carcinomas. Ultrastructural Pathology, 2003, 27, 41-48.	0.9	1
246	Germline Succinate Dehydrogenase Subunit D Mutation Segregating with Familial Non-RET C Cell Hyperplasia. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 4932-4937.	3.6	25
247	Molecular pathology of papillary, follicular and Hürthle cell carcinomas of the thyroid. Arkhiv Patologii, 2003, 65, 45-7.	0.2	2
248	Specific haplotypes of the RET proto-oncogene are over-represented in patients with sporadic papillary thyroid carcinoma. Journal of Medical Genetics, 2002, 39, 260-265.	3.2	40
249	Mitochondrial DNA Somatic Mutations (Point Mutations and Large Deletions) and Mitochondrial DNA Variants in Human Thyroid Pathology. American Journal of Pathology, 2002, 160, 1857-1865.	3.8	243
250	Poorly Differentiated Carcinomas of the Thyroid Gland. International Journal of Surgical Pathology, 2002, 10, 123-131.	0.8	68
251	Diffuse (or multinodular) follicular variant of papillary thyroid carcinoma: a clinicopathologic and immunohistochemical analysis of ten cases of an aggressive form of differentiated thyroid carcinoma. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2002. 440. 418-424.	2.8	90
252	Mucoepidermoid carcinoma of the thyroid: a tumour histotype characterised by P-cadherin neoexpression and marked abnormalities of E-cadherin/catenins complex. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2002, 440, 498-504.	2.8	31

#	Article	IF	CITATIONS
253	Loss of Heterozygosity and Promoter Methylation, but not Mutation, May Underlie Loss of TFF1 in Gastric Carcinoma. Laboratory Investigation, 2002, 82, 1319-1326.	3.7	88
254	P63 Expression in Papillary and Anaplastic Carcinomas of the Thyroid Gland: Lack of an Oncogenetic Role in Tumorigenesis and Progression. Pathology Research and Practice, 2002, 198, 449-454.	2.3	29
255	Abnormalities of the E-cadherin/catenin adhesion complex in classical papillary thyroid carcinoma and in its diffuse sclerosing variant. Journal of Pathology, 2001, 194, 358-366.	4.5	65
256	Microsatellite instability, mitochondrial DNA large deletions, and mitochondrial DNA mutations in gastric carcinoma. Genes Chromosomes and Cancer, 2001, 32, 136-143.	2.8	99
257	Fetal adenomas and minimally invasive follicular carcinomas of the thyroid frequently display a triploid or near triploid DNA pattern. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2001, 438, 336-342.	2.8	20
258	E-cadherin gene (CDH1) promoter methylation as the second hit in sporadic diffuse gastric carcinoma. Oncogene, 2001, 20, 1525-1528.	5.9	252
259	Extended structural variation of a pentanucleotide repeat in the GSTP1 gene: characterisation in a normal population and in thyroid and gastric tumours. European Journal of Human Genetics, 2000, 8, 540-544.	2.8	11
260	Mitochondrial DNA alteration in gastric cancer. Gastroenterology, 2000, 119, 1808-1809.	1.3	12
261	Clinicopathologic and prognostic significance of the expression of mucins, simple mucin antigens and histoblood group antigens in papillary thyroid carcinoma. Endocrine Pathology, 1999, 10, 305-313.	9.0	7
262	Papillary thyroid carcinoma overexpresses fully and underglycosylated mucins together with native and sialylated simple mucin antigens and histo-blood group antigens. Endocrine Pathology, 1999, 10, 315-324.	9.0	12
263	Comments on: Mutations in Mitochondrial Control Region DNA in Gastric Tumours of Japanese Patients, Tamura, et al. Eur J Cancer 1999, 35, 316–319. European Journal of Cancer, 1999, 35, 1407-1408.	2.8	24
264	E-cadherin gene mutations provide a genetic basis for the phenotypic divergence of mixed gastric carcinomas. European Journal of Cancer Prevention, 1999, 8, 351.	1.3	9
265	Sporadicret-rearranged papillary carcinoma of the thyroid: a subset of slow growing, less aggressive thyroid neoplasms?. , 1998, 185, 71-78.		110
266	Sporadic retâ€rearranged papillary carcinoma of the thyroid: a subset of slow growing, less aggressive thyroid neoplasms?. Journal of Pathology, 1998, 185, 71-78.	4.5	9
267	Benign and malignant thyroid lesions show instability at microsatellite loci. European Journal of Cancer, 1997, 33, 293-296.	2.8	36
268	E-cadherin gene alterations are rare events in thyroid tumors. , 1997, 70, 32-38.		81
269	Prognostic factors in thyroid carcinomas. Verhandlungen Der Deutschen Gesellschaft Für Pathologie, 1997, 81, 82-96.	0.5	19
270	Recent Advances in Cytometry, Cytogenetics and Molecular Genetics of Thyroid Tumours and Tumour-like Lesions. Pathology Research and Practice, 1995, 191, 304-317.	2.3	26

#	Article	IF	CITATIONS
271	Correspondence. Cancer, 1994, 73, 2879-2881.	4.1	12
272	Expression of C-erb B2 in tumours and tumour-like lesions of the thyroid. International Journal of Cancer, 1994, 56, 459-461.	5.1	12
273	Immunohistochemical detection of p53 in differentiated, poorly differentiated and undifferentiated carcinomas of the thyroid. Histopathology, 1994, 24, 205-210.	2.9	66
274	Cytogenetic findings in 18 follicular thyroid adenomas. Cancer Genetics and Cytogenetics, 1993, 67, 1-6.	1.0	43
275	Cytogenetic findings in eleven gastric carcinomas. Cancer Genetics and Cytogenetics, 1993, 68, 42-48.	1.0	53
276	Thyroid nodular hyperplasia. Cancer Genetics and Cytogenetics, 1993, 69, 31-34.	1.0	25
277	Signet Ring Cell Carcinoma of the Stomach: A Morphometric, Ultrastructural, and DNA Cytometric Study. Ultrastructural Pathology, 1992, 16, 603-614.	0.9	22
278	Loss of Y chromosome in gastric carcinoma. Cancer Genetics and Cytogenetics, 1992, 61, 39-41.	1.0	18
279	C-erbB-2 expression in primary gastric carcinomas and their metastases. Cancer Genetics and Cytogenetics, 1992, 63, 121.	1.0	8
280	Clonal cytogenetic abnormalities and telomeric associations in a fibroxanthoma of the stomach. Genes Chromosomes and Cancer, 1992, 5, 407-409.	2.8	10
281	c-erbB-2 expression in primary gastric carcinomas and their metastases. Modern Pathology, 1992, 5, 384-90.	5.5	39
282	Is thyroid gland a target of SARS-CoV-2 infection? Results of the analysis of necropsy thyroid specimens from COVID-19 patients. Endocrine Abstracts, 0, , .	0.0	0
283	HMGA2 as new biomarker of pituitary adenomas invasiveness?. Endocrine Abstracts, 0, , .	0.0	0
284	TERT, BRAF and NRAS in the molecular profile of metastatic thyroid cancer: differences between primary and distant disease. Endocrine Abstracts, 0, , .	0.0	0
285	The usefulness of the study of sodium iodide symporter expression in thyroid primary tumors. Endocrine Abstracts, 0, , .	0.0	0
286	Genetic variation in NFE2L2 and SEPS1S associated with increased risk of Hashimoto's thyroiditis. Endocrine Abstracts, 0, , .	0.0	0
287	The changing of clinical scenario in three consecutive generations of a Brazilian Family with Von Hippel-Lindau disease. Endocrine Abstracts, 0, , .	0.0	0
288	Genetic alterations and clinical features in 16 brazilian patients with pheochromocytomas and paragangliomas. Endocrine Abstracts, 0, , .	0.0	0