Jose Luis Ramirez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2206417/publications.pdf Version: 2024-02-01

LOSE LIUS RAMIDEZ

#	Article	IF	CITATIONS
1	The Aedes aegypti Toll Pathway Controls Dengue Virus Infection. PLoS Pathogens, 2008, 4, e1000098.	4.7	765
2	The Role of Hemocytes in <i>Anopheles gambiae</i> Antiplasmodial Immunity. Journal of Innate Immunity, 2014, 6, 119-128.	3.8	737
3	Reciprocal Tripartite Interactions between the Aedes aegypti Midgut Microbiota, Innate Immune System and Dengue Virus Influences Vector Competence. PLoS Neglected Tropical Diseases, 2012, 6, e1561.	3.0	338
4	Discovery of insect and human dengue virus host factors. Nature, 2009, 458, 1047-1050.	27.8	331
5	Chromobacterium Csp_P Reduces Malaria and Dengue Infection in Vector Mosquitoes and Has Entomopathogenic and In Vitro Anti-pathogen Activities. PLoS Pathogens, 2014, 10, e1004398.	4.7	231
6	Native Microbiota Shape Insect Vector Competence for Human Pathogens. Cell Host and Microbe, 2011, 10, 307-310.	11.0	218
7	Dengue Virus Infection of the Aedes aegypti Salivary Gland and Chemosensory Apparatus Induces Genes that Modulate Infection and Blood-Feeding Behavior. PLoS Pathogens, 2012, 8, e1002631.	4.7	185
8	The Toll immune signaling pathway control conserved anti-dengue defenses across diverse Ae. aegypti strains and against multiple dengue virus serotypes. Developmental and Comparative Immunology, 2010, 34, 625-629.	2.3	177
9	Transcriptomic Profiling of Diverse Aedes aegypti Strains Reveals Increased Basal-level Immune Activation in Dengue Virus-refractory Populations and Identifies Novel Virus-vector Molecular Interactions. PLoS Neglected Tropical Diseases, 2013, 7, e2295.	3.0	153
10	Pathogenomics of <i>Culex quinquefasciatus</i> and Meta-Analysis of Infection Responses to Diverse Pathogens. Science, 2010, 330, 88-90.	12.6	150
11	Comparative analysis of gut microbiota of mosquito communities in central Illinois. PLoS Neglected Tropical Diseases, 2017, 11, e0005377.	3.0	146
12	<i>Plasmodium</i> evasion of mosquito immunity and global malaria transmission: The lock-and-key theory. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15178-15183.	7.1	106
13	The entomopathogenic fungus Beauveria bassiana activate toll and JAK-STAT pathway-controlled effector genes and anti-dengue activity in Aedes aegypti. Insect Biochemistry and Molecular Biology, 2012, 42, 126-132.	2.7	105
14	Wolbachia Infections in Anopheles gambiae Cells: Transcriptomic Characterization of a Novel Host-Symbiont Interaction. PLoS Pathogens, 2011, 7, e1001296.	4.7	88
15	Effect of naturally occurring <i>Wolbachia</i> in <i>Anopheles gambiae s.l.</i> mosquitoes from Mali on <i>Plasmodium falciparum</i> malaria transmission. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12566-12571.	7.1	85
16	Host blood meal source has a strong impact on gut microbiota of Aedes aegypti. FEMS Microbiology Ecology, 2019, 95, .	2.7	80
17	A mosquito lipoxin/lipocalin complex mediates innate immune priming in Anopheles gambiae. Nature Communications, 2015, 6, 7403.	12.8	73
18	Mosquito cellular immunity at single-cell resolution. Science, 2020, 369, 1128-1132.	12.6	68

Jose Luis Ramirez

#	Article	IF	CITATIONS
19	Mosquito Infection Responses to Developing Filarial Worms. PLoS Neglected Tropical Diseases, 2009, 3, e529.	3.0	66
20	Mosquito Midgut Prostaglandin Release Establishes Systemic Immune Priming. IScience, 2019, 19, 54-62.	4.1	64
21	Mosquito microbiota cluster by host sampling location. Parasites and Vectors, 2018, 11, 468.	2.5	61
22	Entomopathogenic fungal infection leads to temporospatial modulation of the mosquito immune system. PLoS Neglected Tropical Diseases, 2018, 12, e0006433.	3.0	50
23	Collagen-binding protein, Aegyptin, regulates probing time and blood feeding success in the dengue vector mosquito, <i>Aedes aegypti</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6946-6951.	7.1	49
24	Combined Toxicity of Three Essential Oils Against Aedes aegypti (Diptera: Culicidae) Larvae. Journal of Medical Entomology, 2017, 54, 1684-1691.	1.8	44
25	The Aedes aegypti IMD pathway is a critical component of the mosquito antifungal immune response. Developmental and Comparative Immunology, 2019, 95, 1-9.	2.3	44
26	Challenges and Approaches for Mosquito Targeted Malaria Control. Current Molecular Medicine, 2009, 9, 116-130.	1.3	42
27	In depth annotation of the Anopheles gambiae mosquito midgut transcriptome. BMC Genomics, 2014, 15, 636.	2.8	37
28	Plasmodium berghei P47 is essential for ookinete protection from the Anopheles gambiae complement-like response. Scientific Reports, 2017, 7, 6026.	3.3	30
29	Protocol for Dengue Infections in Mosquitoes (A. aegypti) and Infection Phenotype Determination. Journal of Visualized Experiments, 2007, , 220.	0.3	29
30	Ovicidal and Larvicidal Effects of Garlic and Asafoetida Essential Oils Against West Nile Virus Vectors. Journal of Insect Science, 2018, 18, .	1.5	25
31	Strain-specific pathogenicity and subversion of phenoloxidase activity in the mosquito Aedes aegypti by members of the fungal entomopathogenic genus Isaria. Scientific Reports, 2018, 8, 9896.	3.3	25
32	Leptospermum scoparium essential oil is a promising source of mosquito larvicide and its toxicity is enhanced by a biobased emulsifier. PLoS ONE, 2020, 15, e0229076.	2.5	19
33	Bioactivity of Wild Carrot (Daucus carota, Apiaceae) Essential Oil Against Mosquito Larvae. Journal of Medical Entomology, 2019, 56, 784-789.	1.8	17
34	Molecular discrimination of mosquito vectors and their pathogens. Expert Review of Molecular Diagnostics, 2009, 9, 757-765.	3.1	13
35	Detection of the Bacterium, <i>Xylella fastidiosa</i> , in Saliva of Glassy-Winged Sharpshooter, <i>Homalodisca vitripennis</i> . Journal of Insect Science, 2008, 8, 1-7.	1.5	11
36	Study of the epidemiological behavior of malaria in the Darien Region, Panama. 2015–2017. PLoS ONE, 2019, 14, e0224508.	2.5	11

#	Article	IF	CITATIONS
37	Peptidoglycan Recognition Proteins (PGRPs) Modulates Mosquito Resistance to Fungal Entomopathogens in a Fungal-Strain Specific Manner. Frontiers in Cellular and Infection Microbiology, 2020, 9, 465.	3.9	11

Fate of a Genetically Modified Bacterium in Foregut of Glassy-Winged Sharpshooter (Hemiptera:) Tj ETQq0 0 0 rgBT $\frac{1}{1.8}$ Overlock 10 Tf 50 7 $\frac{1}{1.8}$

39	Impacts of fungal entomopathogens on survival and immune responses of Aedes albopictus and Culex pipiens mosquitoes in the context of native Wolbachia infections. PLoS Neglected Tropical Diseases, 2021, 15, e0009984.	3.0	10
40	Association between fertilizer-mediated changes in microbial communities and Aedes albopictus growth and survival. Acta Tropica, 2016, 164, 54-63.	2.0	9
41	Insecticidal Activity of Commiphora erythraea Essential Oil and Its Emulsions Against Larvae of Three Mosquito Species. Journal of Medical Entomology, 2020, 57, 1835-1842.	1.8	9
42	Transcriptional Responses of Beauveria bassiana Blastospores Cultured Under Varying Glucose Concentrations. Frontiers in Cellular and Infection Microbiology, 2021, 11, 644372.	3.9	9
43	Active and Covert Infections of Cricket Iridovirus and Acheta domesticus Densovirus in Reared Gryllodes sigillatus Crickets. Frontiers in Microbiology, 2021, 12, 780796.	3.5	8
44	Natural malaria infection in anophelines vectors and their incrimination in local malaria transmission in Dari $ ilde{A}$ ©n, Panama. PLoS ONE, 2021, 16, e0250059.	2.5	7
45	Entomopathogen ID: a curated sequence resource for entomopathogenic fungi. Antonie Van Leeuwenhoek, 2018, 111, 897-904.	1.7	6
46	Wolbachia in mosquitoes from the Central Valley of California, USA. Parasites and Vectors, 2020, 13, 558.	2.5	6
47	Comparative Analysis of Gut Microbiota of Culex restuans (Diptera: Culicidae) Females From Different Parents. Journal of Medical Entomology, 2018, 55, 163-171.	1.8	5
48	Green, Yellow, and Red Fluorescent Proteins as Markers for Bacterial Isolates from Mosquito Midguts. Insects, 2019, 10, 49.	2.2	4
49	Molecular Mechanisms Mediating Immune Priming in Anopheles gambiae Mosquitoes. , 2017, , 91-100.		1
50	Editorial: Systemic Coordination of Invertebrate Homeostasis. Frontiers in Physiology, 2021, 12, 736185.	2.8	0
51	Study of the epidemiological behavior of malaria in the Darien Region, Panama. 2015–2017. , 2019, 14, e0224508.		0
52	Study of the epidemiological behavior of malaria in the Darien Region, Panama. 2015–2017. , 2019, 14, e0224508.		0
53	Study of the epidemiological behavior of malaria in the Darien Region, Panama. 2015–2017. , 2019, 14, e0224508.		0
54	Study of the epidemiological behavior of malaria in the Darien Region, Panama. 2015–2017. , 2019, 14, e0224508.		0

#	Article	IF	CITATIONS
55	Study of the epidemiological behavior of malaria in the Darien Region, Panama. 2015–2017. , 2019, 14, e0224508.		Ο
56	Study of the epidemiological behavior of malaria in the Darien Region, Panama. 2015–2017. , 2019, 14, e0224508.		0