Aitak Farzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2206059/publications.pdf

Version: 2024-02-01

37	3,030	24 h-index	34
papers	citations		g-index
38	38	38	4907 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Cognitive impairment by antibiotic-induced gut dysbiosis: Analysis of gut microbiota-brain communication. Brain, Behavior, and Immunity, 2016, 56, 140-155.	4.1	500
2	Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut–brain axis. Neuropeptides, 2012, 46, 261-274.	2.2	390
3	Neuropeptides and the Microbiota-Gut-Brain Axis. Advances in Experimental Medicine and Biology, 2014, 817, 195-219.	1.6	321
4	Tryptophan Metabolism: A Link Between the Gut Microbiota and Brain. Advances in Nutrition, 2020, 11, 709-723.	6.4	319
5	Gut Microbiota and the Neuroendocrine System. Neurotherapeutics, 2018, 15, 5-22.	4.4	295
6	The homeostatic role of neuropeptide <scp>Y</scp> in immune function and its impact on mood and behaviour. Acta Physiologica, 2015, 213, 603-627.	3.8	113
7	Dietary spermidine improves cognitive function. Cell Reports, 2021, 35, 108985.	6.4	98
8	Amygdala NPY Circuits Promote the Development of Accelerated Obesity under Chronic Stress Conditions. Cell Metabolism, 2019, 30, 111-128.e6.	16.2	83
9	Diverse action of lipoteichoic acid and lipopolysaccharide on neuroinflammation, blood-brain barrier disruption, and anxiety in mice. Brain, Behavior, and Immunity, 2017, 60, 174-187.	4.1	66
10	Dextran sulfate sodium-induced colitis alters stress-associated behaviour and neuropeptide gene expression in the amygdala-hippocampus network of mice. Scientific Reports, 2015, 5, 9970.	3.3	62
11	Increasing carbohydrate availability in the hindgut promotes hypothalamic neurotransmitter synthesis: aromatic amino acids linking the microbiota–brain axis. Journal of Neurochemistry, 2019, 149, 641-659.	3.9	58
12	<i> GAL ₃ receptor </i> KO mice exhibit an anxiety-like phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7138-7143.	7.1	57
13	Deletion of Monoglyceride Lipase in Astrocytes Attenuates Lipopolysaccharide-induced Neuroinflammation. Journal of Biological Chemistry, 2016, 291, 913-923.	3.4	55
14	Synergistic effects of NOD1 or NOD2 and TLR4 activation on mouse sickness behavior in relation to immune and brain activity markers. Brain, Behavior, and Immunity, 2015, 44, 106-120.	4.1	53
15	Diabesity and mood disorders: Multiple links through the microbiota-gut-brain axis. Molecular Aspects of Medicine, 2019, 66, 80-93.	6.4	51
16	Visceral Inflammation and Immune Activation Stress the Brain. Frontiers in Immunology, 2017, 8, 1613.	4.8	50
17	Repeated predictable stress causes resilience against colitis-induced behavioral changes in mice. Frontiers in Behavioral Neuroscience, 2014, 8, 386.	2.0	48
18	Neuroimmune pharmacological approaches. Current Opinion in Pharmacology, 2015, 25, 13-22.	3.5	40

#	Article	IF	CITATIONS
19	Behavioral and molecular processing of visceral pain in the brain of mice: impact of colitis and psychological stress. Frontiers in Behavioral Neuroscience, 2015, 9, 177.	2.0	39
20	CART neurons in the arcuate nucleus and lateral hypothalamic area exert differential controls on energy homeostasis. Molecular Metabolism, 2018, 7, 102-118.	6.5	39
21	Association of Cardiorespiratory Fitness and Morphological Brain Changes in the Elderly: Results of the Austrian Stroke Prevention Study. Neurodegenerative Diseases, 2012, 10, 135-137.	1.4	38
22	Oral administration of <i>Lactococcus lactis </i> WHH2078 alleviates depressive and anxiety symptoms in mice with induced chronic stress. Food and Function, 2022, 13, 957-969.	4.6	37
23	Sleep and Microbiome in Psychiatric Diseases. Nutrients, 2020, 12, 2198.	4.1	35
24	Arcuate nucleus and lateral hypothalamic CART neurons in the mouse brain exert opposing effects on energy expenditure. ELife, 2018, 7, .	6.0	30
25	Toll-like receptor 4 contributes to the inhibitory effect of morphine on colonic motility in vitro and in vivo. Scientific Reports, 2015, 5, 9499.	3.3	24
26	Experimental colitis reduces microglial cell activation in the mouse brain without affecting microglial cell numbers. Scientific Reports, 2019, 9, 20217.	3.3	24
27	Visceral hyperalgesia caused by peptide YY deletion and Y2 receptor antagonism. Scientific Reports, 2017, 7, 40968.	3.3	22
28	Anhedonia induced by high-fat diet in mice depends on gut microbiota and leptin. Nutritional Neuroscience, 2020, , 1-14.	3.1	17
29	Intermittent Fasting Exacerbates the Acute Immune and Behavioral Sickness Response to the Viral Mimic Poly(I:C) in Mice. Frontiers in Neuroscience, 2019, 13, 359.	2.8	16
30	Neuropeptide <scp>Y</scp> and peptide <scp>YY</scp> protect from weight loss caused by <scp>B</scp> acille <scp>C</scp> almette– <scp>G</scp> uérin in mice. British Journal of Pharmacology, 2013, 170, 1014-1026.	5.4	15
31	Lack of peptide YY signaling in mice disturbs gut microbiome composition in response to highâ€fat diet. FASEB Journal, 2021, 35, e21435.	0.5	10
32	Galanin receptor 3 attenuates inflammation and influences the gut microbiota in an experimental murine colitis model. Scientific Reports, 2021, 11, 564.	3.3	9
33	GPR88 is a critical regulator of feeding and body composition in mice. Scientific Reports, 2017, 7, 9912.	3.3	8
34	Intranasal Neuropeptide Y Blunts Lipopolysaccharide-Evoked Sickness Behavior but Not the Immune Response in Mice. Neurotherapeutics, 2019, 16, 1335-1349.	4.4	8
35	Bacterial peptidoglycan enhances sickness behaviour induced by bacterial lipopolysaccharide. BMC Pharmacology, 2011, 11, .	0.4	0
36	Bacterial peptidoglycan primes the immune system leading to increased sickness in response to lipopolysaccharide. BMC Pharmacology & Expression (2012, 13, 13).	2.4	0

ARTICLE IF CITATIONS

37 Peptide YY (PYY)., 2019, , 546-554. 0