Nivedita Chaudhri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2205211/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crystal structure of <i>cis</i> -7,8-dihydroxy-5,10,15,20-tetraphenylchlorin and its zinc(II)–ethylenediamine complex. Acta Crystallographica Section E: Crystallographic Communications, 2022, 78, 392-398.	0.5	1
2	Tailoring the Intersystem Crossing and Triplet Dynamics of Free-Base Octaalkyl-β-oxo-Substituted Porphyrins: Competing Effects of Spin–Vibronic and NH Tautomerism Relaxation Channels. Journal of Physical Chemistry A, 2022, 126, 2522-2531.	2.5	1
3	Stepwise Reduction of β-Trioxopyrrocorphins: Collapse of the Oxo-Induced Macrocycle Aromaticity. Journal of Organic Chemistry, 2022, 87, 7179-7192.	3.2	2
4	Unsymmetrically β-Functionalized π-Extended Porphyrins: Synthesis, Spectral, Electrochemical Redox Properties, and Their Utilization as Efficient Two-Photon Absorbers. Inorganic Chemistry, 2022, 61, 9968-9982.	4.0	13
5	β-Oxochlorin cobalt(<scp>ii</scp>) complexes catalyze the electrochemical reduction of CO ₂ . Chemical Communications, 2021, 57, 4396-4399.	4.1	6
6	Structural and Photophysical Characterization of All Five Constitutional Isomers of the Octaethylâ€i²,β′â€dioxoâ€bacterio―and â€isobacteriochlorin Series. Chemistry - A European Journal, 2021, 16189-16203.	273,3	9
7	β-Trioxopyrrocorphins: pyrrocorphins of graded aromaticity. Chemical Science, 2021, 12, 12292-12301.	7.4	4
8	Nickel(<scp>ii</scp>) monobenzoporphyrins and chlorins: synthesis, electrochemistry and anion sensing properties. Dalton Transactions, 2021, 50, 17086-17100.	3.3	2
9	Structural, Photophysical, and Electrochemical Properties of Doubly Fused Porphyrins and Related Fused Chlorins. Inorganic Chemistry, 2020, 59, 1481-1495.	4.0	12
10	Effect of fused indanedione (IND) groups and antipodal \hat{l}^2 -substituents on electrochemical properties of unsymmetrical metalloporphyrins. Journal of Porphyrins and Phthalocyanines, 2020, 24, 1155-1165.	0.8	3
11	Stepwise Reduction of Octaethyl-β,β′-dioxochlorin Isomers: Access to Structurally and Electronically Diverse Hydroporphyrins. Journal of Organic Chemistry, 2020, 85, 13951-13964.	3.2	4
12	Facile Heterogeneous and Homogeneous Anion Induced Electrosynthesis: An Efficient Method for Obtaining π-Extended Porphyrins. Inorganic Chemistry, 2020, 59, 16737-16746.	4.0	8
13	Mechanochemical insertion of cobalt into porphyrinoids using Co ₂ (CO) ₈ as a cobalt source. Green Chemistry, 2020, 22, 3643-3652.	9.0	9
14	Electrochemistry of Triâ€substituted Porphyrins with <i>β</i> â€Appended Ethyl Acetoacetate and Acetylacetone in Neutral and Basic Nonaqueous Solvents. ChemElectroChem, 2020, 7, 1723-1732.	3.4	6
15	Evaluation of Octaethyl-7,17-dioxobacteriochlorin as a Ligand for Transition Metals. Inorganic Chemistry, 2020, 59, 2870-2880.	4.0	8
16	β-Functionalized Dibenzoporphyrins with Mixed Substituents Pattern: Facile Synthesis, Structural, Spectral, and Electrochemical Redox Properties. Inorganic Chemistry, 2019, 58, 2514-2522.	4.0	7
17	Synthesis and structural, photophysical, electrochemical redox and axial ligation properties of highly electron deficient perchlorometalloporphyrins and selective CN ^{â^'} sensing by Co(<scp>ii</scp>) complexes. New Journal of Chemistry, 2018, 42, 8190-8199.	2.8	13
18	Antimicrobial photodynamic therapy: Single-walled carbon nanotube (SWCNT)-Porphyrin conjugate for visible light mediated inactivation of Staphylococcus aureus. Colloids and Surfaces B: Biointerfaces, 2018, 162, 108-117.	5.0	77

#	Article	IF	CITATIONS
19	Synthesis and Electrochemical Characterization of Acetylacetone (acac) and Ethyl Acetate (EA) Appended β-Trisubstituted Push–Pull Porphyrins: Formation of Electronically Communicating Porphyrin Dimers. Inorganic Chemistry, 2018, 57, 13213-13224.	4.0	8
20	Nickel-Induced Skeletal Rearrangement of Free Basetrans-Chlorins into Monofused Nill-Porphyrins: Synthesis, Structural, Spectral, and Electrochemical Redox Properties. Inorganic Chemistry, 2018, 57, 11349-11360.	4.0	14
21	Selective Conversion of Planar <i>trans</i> -Chlorins into Highly Twisted Doubly Fused Porphyrins or Chlorins via Oxidative Fusion. Inorganic Chemistry, 2018, 57, 6658-6668.	4.0	10
22	β-Heptasubstituted Porphyrins: Synthesis, Structural, Spectral, and Electrochemical Properties. European Journal of Inorganic Chemistry, 2018, 2018, 3338-3343.	2.0	6
23	Facile Conversion of Ni(II) Cyclopropylchlorins into Novel β-Substituted Porphyrins through Acid-Catalyzed Ring-Opening Reaction. Inorganic Chemistry, 2017, 56, 424-437.	4.0	10
24	Versatile Synthetic Route for β-Functionalized Chlorins and Porphyrins by Varying the Size of Michael Donors: Syntheses, Photophysical, and Electrochemical Redox Properties. Inorganic Chemistry, 2017, 56, 11532-11545.	4.0	23
25	Effect of functional groups on sensitization of dye-sensitized solar cells (DSSCs) using free base porphyrins. Journal of Porphyrins and Phthalocyanines, 2017, 21, 222-230.	0.8	9
26	Ratiometric and colorimetric "naked eye―selective detection of CN ^{â^'} ions by electron deficient Ni(<scp>ii</scp>) porphyrins and their reversibility studies. Dalton Transactions, 2015, 44, 9149-9157.	3.3	35
27	Colorimetric "naked eye―detection of CN ^{â^'} , F ^{â^'} , CH ₃ COO ^{â^'} and H ₂ PO ₄ ^{â^'} ions by highly nonplanar electron deficient perhaloporphyrins, RSC Advances, 2015, 5, 3269-3275	3.6	29