List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2204537/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fructose/dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis. Physical Chemistry Chemical Physics, 2007, 9, 1793.	2.8	314
2	A high-power glucose/oxygen biofuel cell operating under quiescent conditions. Energy and Environmental Science, 2009, 2, 133-138.	30.8	303
3	Bioelectrocatalytic reduction of dioxygen to water at neutral pH using bilirubin oxidase as an enzyme and 2,2′-azinobis (3-ethylbenzothiazolin-6-sulfonate) as an electron transfer mediator. Journal of Electroanalytical Chemistry, 2001, 496, 69-75.	3.8	232
4	Templated mesoporous carbons: Synthesis and applications. Carbon, 2016, 107, 448-473.	10.3	208
5	Lactate biosensors: current status and outlook. Analytical and Bioanalytical Chemistry, 2014, 406, 123-137.	3.7	156
6	Bioelectrocatalysis-based dihydrogen/dioxygen fuel cell operating at physiological pH. Physical Chemistry Chemical Physics, 2001, 3, 1331-1335.	2.8	153
7	Novel FAD-Dependent Glucose Dehydrogenase for a Dioxygen-Insensitive Glucose Biosensor. Bioscience, Biotechnology and Biochemistry, 2006, 70, 654-659.	1.3	153
8	Kinetic Study of Direct Bioelectrocatalysis of Dioxygen Reduction with Bilirubin Oxidase at Carbon Electrodes. Electrochemistry, 2004, 72, 437-439.	1.4	151
9	Electron transfer pathways in microbial oxygen biocathodes. Electrochimica Acta, 2010, 55, 813-818.	5.2	151
10	Lactococcus lactis catalyses electricity generation at microbial fuel cell anodes via excretion of a soluble quinone. Bioelectrochemistry, 2009, 76, 14-18.	4.6	144
11	Bilirubin oxidase in multiple layers catalyzes four-electron reduction of dioxygen to water without redox mediators. Journal of Electroanalytical Chemistry, 2005, 576, 113-120.	3.8	137
12	Exceptionally High Glucose Current on a Hierarchically Structured Porous Carbon Electrode with "Wired―Flavin Adenine Dinucleotide-Dependent Glucose Dehydrogenase. Journal of the American Chemical Society, 2014, 136, 14432-14437.	13.7	136
13	Diffusionâ€Controlled Oxygen Reduction on Multiâ€Copper Oxidaseâ€Adsorbed Carbon Aerogel Electrodes without Mediator. Fuel Cells, 2007, 7, 463-469.	2.4	135
14	Glucose/O ₂ Biofuel Cell Operating at Physiological Conditions. Electrochemistry, 2002, 70, 940-942.	1.4	128
15	Effects of axial ligand mutation of the type I copper site in bilirubin oxidase on direct electron transfer-type bioelectrocatalytic reduction of dioxygen. Journal of Electroanalytical Chemistry, 2007, 601, 119-124.	3.8	104
16	Structure and Function of the Engineered Multicopper Oxidase CueO from Escherichia coli—Deletion of the Methionine-Rich Helical Region Covering the Substrate-Binding Site. Journal of Molecular Biology, 2007, 373, 141-152.	4.2	103
17	Photosynthetic bioelectrochemical cell utilizing cyanobacteria and water-generating oxidase. Enzyme and Microbial Technology, 2001, 29, 225-231.	3.2	97
18	Air diffusion biocathode with CueO as electrocatalyst adsorbed on carbon particle-modified electrodes. Bioelectrochemistry, 2009, 76, 10-13,	4.6	94

#	Article	IF	CITATIONS
19	Efficient Direct Electron Transfer of PQQ-glucose Dehydrogenase on Carbon Cryogel Electrodes at Neutral pH. Analytical Chemistry, 2011, 83, 5721-5727.	6.5	92
20	High Current Density Bioelectrolysis of D-Fructose at Fructose Dehydrogenase-adsorbed and Ketjen Black-modified Electrodes without a Mediator. Chemistry Letters, 2007, 36, 218-219.	1.3	91
21	Direct Electrochemistry of CueO and Its Mutants at Residues to and Near Type I Cu for Oxygenâ€Reducing Biocathode. Fuel Cells, 2009, 9, 70-78.	2.4	91
22	Flavins contained in yeast extract are exploited for anodic electron transfer by Lactococcus lactis. Bioelectrochemistry, 2010, 78, 173-175.	4.6	87
23	Flexible and high-performance paper-based biofuel cells using printed porous carbon electrodes. Chemical Communications, 2013, 49, 11110.	4.1	78
24	Electrochemical reaction of fructose dehydrogenase on carbon cryogel electrodes with controlled pore sizes. Electrochemistry Communications, 2010, 12, 446-449.	4.7	74
25	Hierarchical meso/macro-porous carbon fabricated from dual MgO templates for direct electron transfer enzymatic electrodes. Scientific Reports, 2017, 7, 45147.	3.3	69
26	Mediated spectroelectrochemical titration of proteins for redox potential measurements by a separator-less one-compartment bulk electrolysis method. Analytical Biochemistry, 2005, 337, 325-331.	2.4	67
27	High-power lactate/O2 enzymatic biofuel cell based on carbon cloth electrodes modified with MgO-templated carbon. Journal of Power Sources, 2019, 436, 226844.	7.8	64
28	Mediated bioelectrocatalytic O2 reduction to water at highly positive electrode potentials near neutral pH. Electrochemistry Communications, 2003, 5, 138-141.	4.7	63
29	Self-excreted mediator from Escherichia coli K-12 for electron transfer to carbon electrodes. Applied Microbiology and Biotechnology, 2007, 76, 1439-1446.	3.6	63
30	Bioelectrocatalytic Reduction of O2Catalyzed by CueO fromEscherichia coliAdsorbed on a Highly Oriented Pyrolytic Graphite Electrode. Chemistry Letters, 2007, 36, 132-133.	1.3	55
31	CueO-immobilized porous carbon electrode exhibiting improved performance of electrochemical reduction of dioxygen to water. Electrochimica Acta, 2008, 53, 5716-5720.	5.2	55
32	High-performance enzymatic biofuel cell based on flexible carbon cloth modified with MgO-templated porous carbon. Journal of Power Sources, 2019, 427, 49-55.	7.8	54
33	X-ray analysis of bilirubin oxidase from <i>Myrothecium verrucaria</i> at 2.3â€Ã resolution using a twinned crystal. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 765-770.	0.7	52
34	Paper-Based Disk-Type Self-Powered Glucose Biosensor Based on Screen-Printed Biofuel Cell Array. Journal of the Electrochemical Society, 2019, 166, B1063-B1068.	2.9	52
35	Electrostatic interaction between an enzyme and electrodes in the electric double layer examined in a view of direct electron transfer-type bioelectrocatalysis. Biosensors and Bioelectronics, 2015, 63, 138-144.	10.1	48
36	Coulometric <scp>d</scp> -Fructose Biosensor Based on Direct Electron Transfer Using <scp>d</scp> -Fructose Dehydrogenase. Analytical Chemistry, 2009, 81, 9383-9387.	6.5	47

#	Article	IF	CITATIONS
37	Continuous sweat lactate monitoring system with integrated screen-printed MgO-templated carbon-lactate oxidase biosensor and microfluidic sweat collector. Electrochimica Acta, 2021, 368, 137620.	5.2	47
38	A screen-printed circular-type paper-based glucose/O2 biofuel cell. Journal of Power Sources, 2017, 360, 516-519.	7.8	46
39	Glucose oxidation catalyzed by FAD-dependent glucose dehydrogenase within Os complex-tethered redox polymer hydrogel. Electrochimica Acta, 2014, 136, 537-541.	5.2	45
40	Effect of Pore Size of MgO-templated Carbon on the Direct Electrochemistry of <small>D</small> -fructose Dehydrogenase. Electrochemistry, 2015, 83, 372-375.	1.4	41
41	Toward Wearable Energy Storage Devices: Paperâ€Based Biofuel Cells based on a Screenâ€Printing Array Structure. ChemElectroChem, 2017, 4, 2460-2463.	3.4	41
42	Bilirubin Oxidase and [Fe(CN)6]3â^'/4â^'Modified Electrode Allowing Diffusion-controlled Reduction of O2to Water at pH 7.0. Chemistry Letters, 2003, 32, 54-55.	1.3	39
43	Amperometric biosensor based on reductive H2O2 detection using pentacyanoferrate-bound polymer for creatinine determination. Analytica Chimica Acta, 2013, 767, 128-133.	5.4	39
44	Screen-printed, Paper-based, Array-type, Origami Biofuel Cell. Chemistry Letters, 2017, 46, 726-728.	1.3	37
45	Self-Powered Bioelectrochemical Nutrient Recovery for Fertilizer Generation from Human Urine. Sustainability, 2019, 11, 5490.	3.2	36
46	Self-Powered Diaper Sensor with Wireless Transmitter Powered by Paper-Based Biofuel Cell with Urine Glucose as Fuel. ACS Sensors, 2021, 6, 3409-3415.	7.8	36
47	A liposome-based energy conversion system for accelerating the multi-enzyme reactions. Physical Chemistry Chemical Physics, 2010, 12, 13904.	2.8	34
48	Paper-based lactate biofuel cell array with high power output. Journal of Power Sources, 2021, 489, 229533.	7.8	34
49	Effects of oxygen on Shewanella decolorationis NTOU1 electron transfer to carbon-felt electrodes. Biosensors and Bioelectronics, 2010, 25, 2651-2656.	10.1	33
50	Bimolecular Rate Constants for FAD-Dependent Glucose Dehydrogenase from Aspergillus terreus and Organic Electron Acceptors. International Journal of Molecular Sciences, 2017, 18, 604.	4.1	33
51	Electrochemical Oxygen Reduction Catalyzed by Bilirubin Oxidase with the Aid of 2,2′-Azinobis(3-ethylbenzothiazolin-6-sulfonate) on a MgO-template Carbon Electrode. Electrochimica Acta, 2015, 180, 555-559.	5.2	31
52	Electrochemical Quartz Crystal Microbalance Study of Direct Bioelectrocatalytic Reduction of Bilirubin Oxidase. Electrochemistry, 2006, 74, 642-644.	1.4	29
53	Fabrication and Characterization of Glucose Fuel Cells with a Microchannel Fabricated on Flexible Polyimide Film. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2013, 26, 303-308.	0.3	29
54	Flavin mononucleotide mediated electron pathway for microbial U(vi) reduction. Physical Chemistry Chemical Physics, 2010, 12, 10081.	2.8	27

#	Article	IF	CITATIONS
55	Pore size effect of MgO-templated carbon on enzymatic H2 oxidation by the hyperthermophilic hydrogenase from Aquifex aeolicus. Journal of Electroanalytical Chemistry, 2018, 812, 221-226.	3.8	27
56	Electrochemical regulation of the endâ€product profile in <i>Propionibacterium freudenreichii</i> ETâ€3 with an endogenous mediator. Biotechnology and Bioengineering, 2008, 101, 579-586.	3.3	26
57	Micro-cubic monolithic carbon cryogel electrode for direct electron transfer reaction of fructose dehydrogenase. Bioelectrochemistry, 2012, 88, 114-117.	4.6	26
58	Thermophilic biocathode with bilirubin oxidase from Bacillus pumilus. Electrochemistry Communications, 2013, 26, 41-44.	4.7	26
59	Lowering the potential of electroenzymatic glucose oxidation on redox hydrogel-modified porous carbon electrode. Electrochimica Acta, 2017, 232, 581-585.	5.2	26
60	Control of the pore size distribution of carbon cryogels by pH adjustment of catalyst solutions. Materials Letters, 2014, 128, 191-194.	2.6	25
61	Effects of pore size and surface properties of MgO-templated carbon on the performance of bilirubin oxidase–modified oxygen reduction reaction cathode. Electrochimica Acta, 2019, 322, 134744.	5.2	23
62	Electrochemical Oxidation of NADH Catalyzed by Diaphorase Conjugated with Poly-1-vinylimidazole Complexed with Os(2,2′-dipyridylamine)2Cl. Chemistry Letters, 2002, 31, 1022-1023.	1.3	22
63	Modifications of laccase activities of copper efflux oxidase, CueO by synergistic mutations in the first and second coordination spheres of the type I copper center. Biochemical and Biophysical Research Communications, 2013, 431, 393-397.	2.1	22
64	Bioelectrocatalytic Oxidation of Glucose on MgO-templated Mesoporous Carbon-modified Electrode. Chemistry Letters, 2014, 43, 928-930.	1.3	22
65	From fundamentals to applications of bioelectrocatalysis: bioelectrocatalytic reactions of FAD-dependent glucose dehydrogenase and bilirubin oxidase. Bioscience, Biotechnology and Biochemistry, 2019, 83, 39-48.	1.3	22
66	Stable Immobilization of Enzyme on Pendant Glycidyl Group-Modified Mesoporous Carbon by Graft Polymerization of Poly(glycidyl methacrylate). Bulletin of the Chemical Society of Japan, 2020, 93, 32-36.	3.2	22
67	Potential-step coulometry of d-glucose using a novel FAD-dependent glucose dehydrogenase. Analytical and Bioanalytical Chemistry, 2006, 386, 645-651.	3.7	21
68	Oxygen reduction reactions of the thermostable bilirubin oxidase from Bacillus pumilus on mesoporous carbon-cryogel electrodes. Electrochimica Acta, 2014, 117, 263-267.	5.2	21
69	Electron Transfer Kinetics between PQQ-dependent Soluble Glucose Dehydrogenase and Mediators. Electrochemistry, 2006, 74, 639-641.	1.4	20
70	Diazonium Electrografting <i>vs</i> . Physical Adsorption of Azure A at Carbon Nanotubes for Mediated Glucose Oxidation with FADâ€GDH. ChemElectroChem, 2020, 7, 4543-4549.	3.4	20
71	Wearable glucose/oxygen biofuel cell fabricated using modified aminoferrocene and flavin adenine dinucleotide-dependent glucose dehydrogenase on poly(glycidyl methacrylate)-grafted MgO-templated carbon. Journal of Power Sources, 2020, 479, 228807.	7.8	19
72	Coulometric bioelectrocatalytic reactions based on NAD-dependent dehydrogenases in tricarboxylic acid cycle. Electrochimica Acta, 2008, 54, 328-333.	5.2	18

#	Article	IF	CITATIONS
73	Water-repellent-treated enzymatic electrode for passive air-breathing biocathodic reduction of oxygen. Electrochemistry Communications, 2013, 36, 46-49.	4.7	18
74	Designing Thin Films of Redox Hydrogel for Highly Efficient Enzymatic Anodes. Journal of the Electrochemical Society, 2013, 160, G79-G82.	2.9	18
75	Electrochemical Impedance Study of Screen-printed Branch Structure Porous Carbon Electrode using MgO-templated Carbon and MgO Particle and its Application for Bilirubin Oxidase-immobilized Biocathode. Electrochemistry, 2015, 83, 329-331.	1.4	18
76	Mediated electrochemical oxidation of glucose via poly(methylene green) grafted on the carbon surface catalyzed by flavin adenine dinucleotide-dependent glucose dehydrogenase. Colloids and Surfaces B: Biointerfaces, 2020, 192, 111065.	5.0	18
77	Osmium Complex Grafted on a Carbon Electrode Surface as a Mediator for a Bioelectrocatalytic Reaction. Chemistry Letters, 2006, 35, 1244-1245.	1.3	17
78	Improved Performance of Gas-diffusion Biocathode for Oxygen Reduction. Electrochemistry, 2012, 80, 324-326.	1.4	17
79	Redox Hydrogel of Glucose Oxidase on MgO-Templated Carbon Electrode. Bulletin of the Chemical Society of Japan, 2016, 89, 24-26.	3.2	17
80	Escherichia coli-catalyzed bioelectrochemical oxidation of acetate in the presence of mediators. Bioelectrochemistry, 2006, 69, 74-81.	4.6	15
81	Thermodynamic Redox Properties Governing the Half-Reduction Characteristics of Histamine Dehydrogenase from <i>Nocardioides simplex</i> . Bioscience, Biotechnology and Biochemistry, 2008, 72, 786-796.	1.3	15
82	Diffusion-controlled Detection of Glucose with Microelectrodes in Mediated Bioelectrocatalytic Oxidation. Analytical Sciences, 2013, 29, 279-281.	1.6	15
83	Modification of Spectroscopic Properties and Catalytic Activity of <i>Escherichia coli</i> CueO by Mutations of Methionine 510, the Axial Ligand to the Type I Cu. Bulletin of the Chemical Society of Japan, 2009, 82, 504-508.	3.2	14
84	Transmission mechanism of the change in membrane potential by use of organic liquid membrane system. Journal of Electroanalytical Chemistry, 2012, 673, 8-12.	3.8	14
85	Tuning the redox potential of vitamin K ₃ derivatives by oxidative functionalization using a Ag(<scp>i</scp>)/GO catalyst. Chemical Communications, 2017, 53, 8890-8893.	4.1	14
86	Direct electrochemistry of histamine dehydrogenase from Nocardioides simplex. Journal of Electroanalytical Chemistry, 2009, 625, 144-148.	3.8	13
87	Hofmeister effects on the glucose oxidase hydrogel-modified electrode. Electrochimica Acta, 2016, 201, 228-232.	5.2	13
88	Redox-Polymers Enable Uninterrupted Day/Night Photo-Driven Electricity Generation in Biophotovoltaic Devices. Journal of the Electrochemical Society, 2017, 164, H3037-H3040.	2.9	13
89	Toward an ideal platform structure based on MgO-templated carbon for flavin adenine dinucleotide-dependent glucose dehydrogenase-Os polymer-hydrogel electrodes. Electrochimica Acta, 2020, 343, 136110.	5.2	13
90	Disposable electrochemical glucose sensor based on water-soluble quinone-based mediators with flavin adenine dinucleotide-dependent glucose dehydrogenase. Biosensors and Bioelectronics, 2021, 189, 113357.	10.1	13

#	Article	IF	CITATIONS
91	Direct electron transfer to a metagenome-derived laccase fused to affinity tags near the electroactive copper site. Physical Chemistry Chemical Physics, 2013, 15, 20585.	2.8	12
92	Pentacyanoferrate and Bilirubin Oxidase-bound Polymer for Oxygen Reduction Bio-cathode. Electrochemistry, 2008, 76, 594-596.	1.4	11
93	Toward self-powered real-time health monitoring of body fluid components based on improved enzymatic biofuel cells. JPhys Energy, 2021, 3, 032002.	5.3	11
94	Electrochemistry of <scp>d</scp> -Gluconate 2-Dehydrogenase from <i>Gluconobacter frateurii</i> on Indium Tin Oxide Electrode Surface. Chemistry Letters, 2007, 36, 1164-1165.	1.3	10
95	Electrochemical Impedance Simulation of Branch Structure Porous Carbon Electrode Using Transmission Line Model. Electrochemistry, 2015, 83, 335-338.	1.4	10
96	Bioelectrochemical Determination at Histamine Dehydrogenase-based Electrodes. Electrochemistry, 2008, 76, 600-602.	1.4	9
97	Micro-coulometric study of bioelectrochemical reaction coupled with TCA cycle. Biosensors and Bioelectronics, 2012, 34, 244-248.	10.1	9
98	Electrostatic and steric interaction between redox polymers and some flavoenzymes in mediated bioelectrocatalysis. Journal of Electroanalytical Chemistry, 2013, 689, 26-30.	3.8	9
99	Long-term Continuous Operation of FAD-dependent Glucose Dehydrogenase Hydrogel-modified Electrode at 37 °C. Chemistry Letters, 2016, 45, 484-486.	1.3	9
100	éμç´è§¦åª'定å ۣé›»æμ• Review of Polarography, 2006, 52, 81-88.	0.1	8
101	Mediated bioelectrocatalytic reaction at an ultrathin redox polymer film on a glassy carbon electrode surface and effect of the ionic strength on the catalytic current. Journal of Electroanalytical Chemistry, 2008, 614, 67-72.	3.8	8
102	Effect of Electrolyte Ions on the Stability of Flavin Adenine Dinucleotideâ€Đependent Glucose Dehydrogenase. ChemElectroChem, 2019, 6, 1028-1031.	3.4	8
103	Designing a cross-linked redox network for a mediated enzyme-based electrode. Chemical Communications, 2021, 57, 6999-7002.	4.1	8
104	Direct Electron Transfer Reaction of d-Gluconate 2-Dehydrogenase Adsorbed on Bare and Thiol-modified Gold Electrodes. Electrochemistry, 2008, 76, 549-551.</span 	1.4	7
105	Bioelectrocatalytic endpoint assays based on steady-state diffusion current at microelectrode array. Electrochemistry Communications, 2010, 12, 839-842.	4.7	7
106	Ion Transport across Planar Bilayer Lipid Membrane Driven by <scp>d</scp> -Fructose Dehydrogenase-catalyzed Electron Transport. Chemistry Letters, 2011, 40, 486-488.	1.3	6
107	Bioelectrocatalytic oxidation of glucose with antibiotic channel-containing liposomes. Physical Chemistry Chemical Physics, 2013, 15, 2650.	2.8	6
108	Chitosan-based enzyme ink for screen-printed bioanodes. RSC Advances, 2021, 11, 20550-20556.	3.6	6

#	Article	IF	CITATIONS
109	Electrochemical modification at multiwalled carbon nanotube electrodes with Azure A for FAD- glucose dehydrogenase wiring: structural optimization to enhance catalytic activity and stability. JPhys Energy, 2021, 3, 024004.	5.3	6
110	High Capacity Lactate Biofuel Cell Using Enzyme Cascade without NAD. Chemistry Letters, 2021, 50, 1160-1163.	1.3	6
111	New function of aldoxime dehydratase: Redox catalysis and the formation of an expected product. PLoS ONE, 2017, 12, e0175846.	2.5	5
112	Separator-less One-compartment Bulk Electrolysis with a Small Auxiliary Electrode and its Application to Spectroelectrochemistry. Electrochemistry, 2004, 72, 484-486.	1.4	5
113	AC Impedance Analysis of Enzyme-Functional Electrodes. Bunseki Kagaku, 2008, 57, 625-629.	0.2	4
114	A two-step synthesis of 7,8-dichloro-riboflavin with high yield. RSC Advances, 2012, 2, 2700.	3.6	4
115	Dependence of Steady-State Catalytic Current on the Thickness of an Enzyme-Mediator-Immobilized Layer Fabricated by Layer-by-Layer Method. Bunseki Kagaku, 2007, 56, 419-424.	0.2	3
116	Amperometric Detection of Acetate Based on Mediated Bioelectrocatalysis using Escherichia coli Cells Cultivated with Acetate. Electrochemistry, 2008, 76, 631-633.	1.4	3
117	Electrochemical Activation of a Novel Laccase, MELAC, Isolated from Compost. Chemistry Letters, 2015, 44, 654-655.	1.3	3
118	Oxygen Reduction Reaction Activity and Stability of Electrochemically Deposited Bilirubin Oxidase. Chemistry Letters, 2018, 47, 1269-1271.	1.3	3
119	Effects of electrolyte on the mediated electrocatalytic glucose oxidation reaction catalyzed by flavin adenine dinucleotide glucose dehydrogenase. Electrochimica Acta, 2019, 313, 189-193.	5.2	3
120	Thermal properties and applications. , 2020, , 415-447.		3
121	Extracellular electron transfer by Microcystis aeruginosa is solely driven by high pH. Bioelectrochemistry, 2021, 137, 107637.	4.6	3
122	Fabrication of an Organic Redox Capacitor with a Neutral Aqueous Electrolyte Solution. Electrochemistry, 2021, 89, 317-322.	1.4	3
123	Re-construction of Pentose Phosphate Pathway Coupled with a Bioelectrocatalytic NADPH Oxidation System for Bioanodes of Biofuel Cells. Electrochemistry, 2013, 81, 981-984.	1.4	2
124	Chemical properties and applications. , 2020, , 251-371.		2
125	Improved glucose oxidation catalytic current generation by an FAD-dependent glucose dehydrogenase-modified hydrogel electrode, in accordance with the Hofmeister effect. JPhys Energy, 2021, 3, 024005.	5.3	2
126	Ready-to-use paper biofuel cell driven by water. JPhys Energy, 2021, 3, 016001.	5.3	2

SEIYA TSUJIMURA

#	Article	IF	CITATIONS
127	ãfē,₿,ªé›»æ±ã®ãŸã,ã®é…µç´è§¦åª'機能電極. Electrochemistry, 2008, 76, 900-909.	1.4	1
128	Electrochemical Investigation on Permeability of Organic Acid Ions Through Amphotericin B Channels. Electrochemistry, 2012, 80, 315-317.	1.4	1
129	Preparation of graphene. , 2020, , 39-171.		1
130	Electrical properties and applications. , 2020, , 173-249.		1
131	Synechococcus and Other Bloomâ€Forming Cyanobacteria Exhibit Unique Redox Signatures. ChemElectroChem, 2021, 8, 360-364.	3.4	1
132	Surface Properties Governing Direct Electron Transfer Kinetics of a Multi-copper Oxidase CueO. ECS Meeting Abstracts, 2009, , .	0.0	0
133	å^†æ¥µæ›²ç·šÂ·ã,µã,ª,¯ãfªãffã,¯ãfœãf«ã,¿ãf³ãfjãfˆãfªï¼¥¼^5)生物電気化å¦. Electrochemistry,	2009,77	, 4 8 6-492.
134	Stopped flow kinetic studies on reductive half-reaction of histamine dehydrogenase from Nocardioides simplex with histamine. Journal of Biochemistry, 2010, 148, 47-54.	1.7	0
135	Glucose Fuel Cells with a MicroChannel Fabricated on Flexible Polyimide Film. Journal of Physics: Conference Series, 2013, 476, 012048.	0.4	0
136	Improved Formation of Pt Multilayers at Near-neutral pH: Underpotential Deposition and Surface Limited Redox Replacement. Chemistry Letters, 2018, 47, 1379-1382.	1.3	0
137	4. Porous carbon materials for enzymatic fuel cells. , 2019, , 59-76.		0
138	Mechanical properties and applications. , 2020, , 373-414.		0
139	Biomedical properties and applications. , 2020, , 449-483.		0
140	Summary and prospects. , 2020, , 561-591.		0
141	Beyond graphene. , 2020, , 485-560.		0
142	Polydopamine Coating on Lactate Oxidase- and 1,2-Naphthoquinone-modified Porous Carbon Electrode for Stability Improvement. Chemistry Letters, 2021, 50, 593-595.	1.3	0
143	Recent advances in carbon electrodes for the development of enzyme-based biofuel cells. Tanso, 2014, 2014, 195-203.	0.1	0
144	Carbonaceous Electrodes Featuring Tunable Mesopores for Use as Enzyme Electrodes. , 2017, , 381-399.		0

#	Article	IF	CITATIONS
145	Performance Evaluation of Screen-Printed Paper-Based Glucose Biofuel Cell Using MgO-Templated Porous Carbon Material for Self-Powered Diaper Sensor. ECS Meeting Abstracts, 2018, , .	0.0	0
146	Evaluation of enzymatic bioelectrocatalytic reaction. Denki Kagaku, 2020, 88, 254-261.	0.0	0