Ronit Bitton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2203944/publications.pdf

Version: 2024-02-01

72 papers

2,471 citations

218677 26 h-index 206112 48 g-index

74 all docs

74 docs citations

times ranked

74

3604 citing authors

#	Article	IF	CITATIONS
1	Emergent hybrid mesophases in ternary mixtures of cellulose nanocrystals ―Pluronic micellesâ€water. Polymers for Advanced Technologies, 2022, 33, 3800-3809.	3.2	1
2	Macroscopic membranes selfâ€assembled by alginate andÂaÂcationic and amphiphilic peptide for cell culture. Polymers for Advanced Technologies, 2022, 33, 3832-3841.	3.2	1
3	Hierarchical Membranes Selfâ€Assembled at the Interface between Peptides and Polymer Aqueous Solutions. Israel Journal of Chemistry, 2022, 62, .	2.3	1
4	Effects of Non-Ionic Micelles on the Acid-Base Equilibria of a Weak Polyelectrolyte. Polymers, 2022, 14, 1926.	4.5	2
5	Hyaluronan (HA)-inspired glycopolymers as molecular tools for studying HA functions. RSC Chemical Biology, 2021, 2, 568-576.	4.1	4
6	Control over size, shape, and photonics of self-assembled organic nanocrystals. Beilstein Journal of Organic Chemistry, 2021, 17, 42-51.	2.2	3
7	Antimicrobial hydrogels composed of chitosan and sulfated polysaccharides of red microalgae. Polymer, 2021, 215, 123353.	3.8	27
8	Effect of heparin and peptide conjugation on structure and functional properties of alginate in solutions and hydrogels. Materials Advances, 2021, 2, 440-447.	5.4	3
9	Surfactant-Mediated Co-Existence of Single-Walled Carbon Nanotube Networks and Cellulose Nanocrystal Mesophases. Nanomaterials, 2021, 11, 3059.	4.1	1
10	Avidity observed between a bivalent inhibitor and an enzyme monomer with a single active site. PLoS ONE, 2021, 16, e0249616.	2.5	2
11	Physico-chemical characteristics of the sulfated polysaccharides of the red microalgae Dixoniella grisea and Porphyridium aerugineum. International Journal of Biological Macromolecules, 2020, 145, 1171-1179.	7. 5	35
12	Crescent-Shaped Supramolecular Tetrapeptide Nanostructures. Journal of the American Chemical Society, 2020, 142, 20058-20065.	13.7	33
13	Nano-to-meso structure of cellulose nanocrystal phases in ethylene–glycol–water mixtures. Soft Matter, 2020, 16, 8444-8452.	2.7	3
14	Effect of Crosslinker Topology on Enzymatic Degradation of Hydrogels. Biomacromolecules, 2020, 21, 3279-3286.	5.4	12
15	Time matters for macroscopic membranes formed by alginate and cationic \hat{l}^2 -sheet peptides. Soft Matter, 2020, 16, 10132-10142.	2.7	6
16	Sensing Exposure Time to Oxygen by Applying a Percolation-Induced Principle. Sensors, 2020, 20, 4465.	3.8	1
17	A combined experimental and computational approach reveals how aromatic peptide amphiphiles self-assemble to form ion-conducting nanohelices. Materials Chemistry Frontiers, 2020, 4, 3022-3031.	5.9	13
18	Spontaneous Alignment of Selfâ€Assembled Cationic and Amphiphilic βâ€Sheet Peptides. Advanced Materials Interfaces, 2020, 7, 2000332.	3.7	6

#	Article	IF	CITATIONS
19	Effect of the C-terminal amino acid of the peptide on the structure and mechanical properties of alginate–peptide hydrogels across length-scales. Soft Matter, 2020, 16, 6155-6162.	2.7	6
20	Hydrogels composed of hyaluronic acid and dendritic ELPs: hierarchical structure and physical properties. Soft Matter, 2019, 15, 917-925.	2.7	23
21	Short and Soft: Multidomain Organization, Tunable Dynamics, and Jamming in Suspensions of Grafted Colloidal Cylinders with a Small Aspect Ratio. Langmuir, 2019, 35, 17103-17113.	3.5	5
22	CPAP3 proteins in the mineralized cuticle of a decapod crustacean. Scientific Reports, 2018, 8, 2430.	3.3	13
23	The importance of the helical structure of a MamC-derived magnetite-interacting peptide for its function in magnetite formation. Acta Crystallographica Section D: Structural Biology, 2018, 74, 10-20.	2.3	10
24	RGD-presenting peptides in amphiphilic and anionic \hat{l}^2 -sheet hydrogels for improved interactions with cells. RSC Advances, 2018, 8, 10072-10080.	3.6	19
25	The dual role of MamB in magnetosome membrane assembly and magnetite biomineralization. Molecular Microbiology, 2018, 107, 542-557.	2.5	35
26	Using small-angle X-ray scattering (SAXS) to study the structure of self-assembling biomaterials. , 2018, , 291-304.		14
27	Self-Assembled Nanostructures Regulate H ₂ S Release from Constitutionally Isomeric Peptides. Journal of the American Chemical Society, 2018, 140, 14945-14951.	13.7	62
28	Oligomerization and Auto-methylation of the Human Lysine Methyltransferase SETD6. Journal of Molecular Biology, 2018, 430, 4359-4368.	4.2	6
29	Tuning the mechanical properties of alginate–peptide hydrogels. Soft Matter, 2018, 14, 4364-4373.	2.7	24
30	Effect of peptide self-assembly on the rheological properties of alginate-peptide conjugates solutions. Polymer, 2017, 108, 87-96.	3.8	9
31	Multi-scale characterization of thermoresponsive dendritic elastin-like peptides. Colloids and Surfaces B: Biointerfaces, 2017, 153, 141-151.	5.0	16
32	Enzymatic activation of cell-penetrating peptides in self-assembled nanostructures triggers fibre-to-micelle morphological transition. Chemical Communications, 2017, 53, 7037-7040.	4.1	31
33	Curcumin Protects Skin against UVB-Induced Cytotoxicity via the Keap1-Nrf2 Pathway: The Use of a Microemulsion Delivery System. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-17.	4.0	28
34	Elastin‣ike Peptides (ELPs) – Building Blocks for Stimuliâ€Responsive Selfâ€Assembled Materials. Israel Journal of Chemistry, 2016, 56, 581-589.	2.3	16
35	Genetic manipulation of iron biomineralization enhances MR relaxivity in a ferritin-M6A chimeric complex. Scientific Reports, 2016, 6, 26550.	3.3	17
36	The sulfated polysaccharide from a marine red microalga as a platform for the incorporation of zinc ions. Carbohydrate Polymers, 2016, 152, 658-664.	10.2	34

#	Article	IF	Citations
37	Disease-Homologous Mutation in the Cation Diffusion Facilitator Protein MamM Causes Single-Domain Structural Loss and Signifies Its Importance. Scientific Reports, 2016, 6, 31933.	3.3	17
38	Dendritic Elastin-like Peptides: The Effect of Branching on Thermoresponsiveness. Biomacromolecules, 2016, 17, 262-270.	5.4	24
39	Molecular design for growth of supramolecular membranes with hierarchical structure. Soft Matter, 2016, 12, 1401-1410.	2.7	24
40	The effect of covalently linked RGD peptide on the conformation of polysaccharides in aqueous solutions. Colloids and Surfaces B: Biointerfaces, 2016, 137, 214-220.	5.0	29
41	Crystal structure of the magnetobacterial protein MtxA C-terminal domain reveals a new sequence-structure relationship. Frontiers in Molecular Biosciences, 2015, 2, 25.	3.5	2
42	Light-Controlled Hierarchical Self-Assembly of Polyelectrolytes and Supramolecular Polymers. ACS Macro Letters, 2015, 4, 43-47.	4.8	28
43	Co-assembly, spatiotemporal control and morphogenesis of a hybrid protein–peptide system. Nature Chemistry, 2015, 7, 897-904.	13.6	142
44	Nitroxide delivery system for Nrf2 activation and skin protection. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 94, 123-134.	4.3	13
45	Algal Glue Mimetics. , 2015, , 167-180.		0
46	Electrostatic Control of Structure in Selfâ€Assembled Membranes. Small, 2014, 10, 500-505.	10.0	32
47	A designer peptide as a template for growing Au nanoclusters. Chemical Communications, 2014, 50, 10648-10650.	4.1	15
48	Cation Diffusion Facilitators Transport Initiation and Regulation Is Mediated by Cation Induced Conformational Changes of the Cytoplasmic Domain. PLoS ONE, 2014, 9, e92141.	2.5	41
49	Self-assembly of biomolecular soft matter. Faraday Discussions, 2013, 166, 9.	3.2	84
50	Environmentally responsive hydrogels with dynamically tunable properties as extracellular matrix mimetic. Reviews in Chemical Engineering, 2013, 29, .	4.4	11
51	Characterization of the N-Terminal Domain of BteA: A Bordetella Type III Secreted Cytotoxic Effector. PLoS ONE, 2013, 8, e55650.	2.5	5
52	BtcA, A Class IA Type III Chaperone, Interacts with the BteA N-Terminal Domain through a Globular/Non-Globular Mechanism. PLoS ONE, 2013, 8, e81557.	2.5	8
53	Nanostructure-templated control of drug release from peptide amphiphile nanofiber gels. Soft Matter, 2012, 8, 3586.	2.7	95
54	The Role of Nanoscale Architecture in Supramolecular Templating of Biomimetic Hydroxyapatite Mineralization. Small, 2012, 8, 2195-2202.	10.0	68

#	Article	IF	Citations
55	Biomimetic Mineralization: The Role of Nanoscale Architecture in Supramolecular Templating of Biomimetic Hydroxyapatite Mineralization (Small 14/2012). Small, 2012, 8, 2194-2194.	10.0	1
56	Electric Field Controlled Selfâ€Assembly of Hierarchically Ordered Membranes. Advanced Functional Materials, 2012, 22, 369-377.	14.9	51
57	Selfâ€Assembly: Electric Field Controlled Selfâ€Assembly of Hierarchically Ordered Membranes (Adv.) Tj ETQq1 1	0.784314 14.9	rgBT /Overl
58	Switching of self-assembly in a peptide nanostructure with a specific enzyme. Soft Matter, 2011, 7, 9665.	2.7	132
59	Rücktitelbild: Electrostatic Control of Bioactivity (Angew. Chem. 28/2011). Angewandte Chemie, 2011, 123, 6308-6308.	2.0	0
60	Electrostatic Control of Bioactivity. Angewandte Chemie - International Edition, 2011, 50, 6292-6295.	13.8	79
61	A bioactive self-assembled membrane to promote angiogenesis. Biomaterials, 2011, 32, 1574-1582.	11.4	133
62	A self-assembly pathway to aligned monodomain gels. Nature Materials, 2010, 9, 594-601.	27. 5	576
63	Physical properties of hierarchically ordered self-assembled planar and spherical membranes. Soft Matter, 2010, 6, 1816.	2.7	53
64	Cooperative DNA binding and assembly by a bZip peptide-amphiphile. Soft Matter, 2010, 6, 1035.	2.7	26
65	Phloroglucinol-based biomimetic adhesives for medical applications. Acta Biomaterialia, 2009, 5, 1582-1587.	8.3	34
66	Distribution of guest molecules in Pluronic micelles studied by double electron electron spin resonance and small angle X-ray scattering. Physical Chemistry Chemical Physics, 2009, 11, 148-160.	2.8	28
67	Fibrin Sealants., 2009, , .		0
68	Novel Biomimetic Adhesives Based on Algae Glue. Macromolecular Bioscience, 2008, 8, 393-400.	4.1	48
69	The Influence of Halideâ€Mediated Oxidation on Algaeâ€Born Adhesives. Macromolecular Bioscience, 2007, 7, 1280-1289.	4.1	21
70	Morphological Characterization of Self-Assembled Peptide Nucleic Acid Amphiphiles. Journal of Physical Chemistry B, 2006, 110 , 9027 - 9033 .	2.6	28
71	Structure of Algal-Born Phenolic Polymeric Adhesives. Macromolecular Bioscience, 2006, 6, 737-746.	4.1	43
72	Self-Assembly of Model DNA-Binding Peptide Amphiphiles. Langmuir, 2005, 21, 11888-11895.	3.5	51