Hans Jacquemyn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2203275/publications.pdf

Version: 2024-02-01

244 papers

10,937 citations

52 h-index 85 g-index

248 all docs 248 docs citations

248 times ranked

9075 citing authors

#	Article	IF	CITATIONS
1	EXTINCTION DEBT OF FOREST PLANTS PERSISTS FOR MORE THAN A CENTURY FOLLOWING HABITAT FRAGMENTATION. Ecology, 2006, 87, 542-548.	3.2	405
2	Susceptibility of Common and Rare Plant Species to the Genetic Consequences of Habitat Fragmentation. Conservation Biology, 2007, 21, 823-831.	4.7	383
3	Homogenization of forest plant communities and weakening of species?environment relationships via agricultural land use. Journal of Ecology, 2007, 95, 565-573.	4.0	300
4	Forest fragmentation effects on patch occupancy and population viability of herbaceous plant species. New Phytologist, 2005, 166, 723-736.	7.3	273
5	Possible effects of habitat fragmentation and climate change on the range of forest plant species. Ecology Letters, 2002, 5, 525-530.	6.4	242
6	Metaâ€Analysis of Susceptibility of Woody Plants to Loss of Genetic Diversity through Habitat Fragmentation. Conservation Biology, 2012, 26, 228-237.	4.7	242
7	What constrains the distribution of orchid populations?. New Phytologist, 2014, 202, 392-400.	7. 3	207
8	Microbiology of sugarâ€rich environments: diversity, ecology and system constraints. Environmental Microbiology, 2015, 17, 278-298.	3.8	144
9	Analysis of network architecture reveals phylogenetic constraints on mycorrhizal specificity in the genus Orchis (Orchidaceae). New Phytologist, 2011, 192, 518-528.	7. 3	135
10	Forest plant species richness in small, fragmented mixed deciduous forest patches: the role of area, time and dispersal limitation. Journal of Biogeography, 2001, 28, 801-812.	3.0	134
11	A spatially explicit analysis of seedling recruitment in the terrestrial orchid <i>Orchis purpurea</i> New Phytologist, 2007, 176, 448-459.	7. 3	133
12	Evolutionary changes in plant reproductive traits following habitat fragmentation and their consequences for population fitness. Journal of Ecology, 2012, 100, 76-87.	4.0	126
13	Can a seed bank maintain the genetic variation in the above ground plant population?. Oikos, 2008, 117, 1-5.	2.7	125
14	Patch occupancy, population size and reproductive success of a forest herb (Primula elatior) in a fragmented landscape. Oecologia, 2002, 130, 617-625.	2.0	119
15	Short-term effects of different management regimes on the response of calcareous grassland vegetation to increased nitrogen. Biological Conservation, 2003, 111, 137-147.	4.1	119
16	Adaptation to fragmentation: evolutionary dynamics driven by human influences. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160037.	4.0	118
17	Reduced reproductive success in small populations of the self-incompatible Primula vulgaris. Journal of Ecology, 2004, 92, 5-14.	4.0	114
18	Influence of environmental and spatial variables on regional distribution of forest plant species in a fragmented and changing landscape. Ecography, 2003, 26, 768-776.	4.5	110

#	Article	IF	CITATIONS
19	Elevational gradients of species diversity, breeding system and floral traits of orchid species on Reunion Island. Journal of Biogeography, 2005, 32, 1751-1761.	3.0	107
20	Host preference and network properties in biotrophic plant–fungal associations. New Phytologist, 2018, 217, 1230-1239.	7.3	107
21	Impact of primer choice on characterization of orchid mycorrhizal communities using 454 pyrosequencing. Molecular Ecology Resources, 2014, 14, 679-699.	4.8	105
22	Soil phosphorus constrains biodiversity across European grasslands. Global Change Biology, 2014, 20, 3814-3822.	9.5	105
23	A meta-analysis of the relation between mating system, growth form and genotypic diversity in clonal plant species. Evolutionary Ecology, 2008, 22, 299-312.	1.2	104
24	Coexisting orchid species have distinct mycorrhizal communities and display strong spatial segregation. New Phytologist, 2014, 202, 616-627.	7.3	104
25	Low specificity and nested subset structure characterize mycorrhizal associations in five closely related species of the genus <i>Orchis</i> Molecular Ecology, 2010, 19, 4086-4095.	3.9	101
26	The species pool concept applied to forests in a fragmented landscape: dispersal limitation versus habitat limitation. Journal of Vegetation Science, 2002, 13, 27-34.	2.2	92
27	Genetic structure of the forest herb Primula elatior in a changing landscape. Molecular Ecology, 2004, 13, 211-219.	3.9	92
28	Does nectar reward affect rarity and extinction probabilities of orchid species? An assessment using historical records from Belgium and the Netherlands. Biological Conservation, 2005, 121, 257-263.	4.1	92
29	Management effects on the vegetation and soil seed bank of calcareous grasslands: An 11-year experiment. Biological Conservation, 2011, 144, 416-422.	4.1	86
30	Mycorrhizal networks and coexistence in speciesâ€rich orchid communities. New Phytologist, 2015, 206, 1127-1134.	7.3	86
31	Sizeâ€dependent flowering and costs of reproduction affect population dynamics in a tuberous perennial woodland orchid. Journal of Ecology, 2010, 98, 1204-1215.	4.0	85
32	Differential colonization causing non-random forest plant community structure in a fragmented agricultural landscape. Ecography, 2001, 24, 369-380.	4.5	78
33	Patterns of population genetic diversity in riparian and aquatic plant species along rivers. Journal of Biogeography, 2010, 37, 1730-1739.	3.0	75
34	Acinetobacter nectaris sp. nov. and Acinetobacter boissieri sp. nov., isolated from floral nectar of wild Mediterranean insect-pollinated plants. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 1532-1539.	1.7	74
35	The effects of grassland management on plant performance and demography in the perennial herb Primula veris. Journal of Applied Ecology, 2004, 41, 1080-1091.	4.0	73
36	Low recruitment across life stages partly accounts for the slow colonization of forest herbs. Journal of Ecology, 2009, 97, 109-117.	4.0	72

#	Article	IF	CITATIONS
37	Spatial variation in belowâ€ground seed germination and divergent mycorrhizal associations correlate with spatial segregation of three coâ€occurring orchid species. Journal of Ecology, 2012, 100, 1328-1337.	4.0	72
38	Abiotic rather than biotic filtering shapes the arbuscular mycorrhizal fungal communities of European seminatural grasslands. New Phytologist, 2018, 220, 1262-1272.	7.3	72
39	Fine-scale genetic structure of life history stages in the food-deceptive orchid Orchis purpurea. Molecular Ecology, 2006, 15, 2801-2808.	3.9	68
40	Pollination efficiency and reproductive patterns in relation to local plant density, population size, and floral display in the rewarding <i>Listera ovata </i> (Orchidaceae). Botanical Journal of the Linnean Society, 2008, 157, 713-721.	1.6	67
41	Synergistic effects of an extreme weather event and habitat fragmentation on a specialised insect herbivore. Oecologia, 2009, 159, 117-126.	2.0	67
42	Mycorrhizal diversity, seed germination and longâ€term changes in population size across nine populations of the terrestrial orchid ⟨i⟩Neottia ovata⟨i⟩. Molecular Ecology, 2015, 24, 3269-3280.	3.9	67
43	Specificity and localised distribution of mycorrhizal fungi in the soil may contribute to co-existence of orchid species. Fungal Ecology, 2016, 20, 155-165.	1.6	66
44	Effects of age and distance on the composition of mixed deciduous forest fragments in an agricultural landscape. Journal of Vegetation Science, 2001, 12, 635-642.	2.2	64
45	Variation in the functioning of autonomous self-pollination, pollinator services and floral traits in three Centaurium species. Annals of Botany, 2011, 107, 917-925.	2.9	64
46	Differences in mycorrhizal communities between <i>Epipactis palustris</i> , <i>E. helleborine</i> and its presumed sister species <i>E. neerlandica</i> . Annals of Botany, 2016, 118, 105-114.	2.9	62
47	Local forest environment largely affects below-ground growth, clonal diversity and fine-scale spatial genetic structure in the temperate deciduous forest herb Paris quadrifolia. Molecular Ecology, 2005, 14, 4479-4488.	3.9	61
48	Predicting vascular plant species richness of fragmented forests in agricultural landscapes in central Belgium. Forest Ecology and Management, 2002, 158, 85-102.	3.2	59
49	THE CONTRIBUTION OF MATING SYSTEM VARIATION TO REPRODUCTIVE ISOLATION IN TWO CLOSELY RELATED <i>CENTAURIUM </i> SPECIES (GENTIANACEAE) WITH A GENERALIZED FLOWER MORPHOLOGY. Evolution; International Journal of Organic Evolution, 2014, 68, 1281-1293.	2.3	59
50	Mycorrhizal specificity does not limit the distribution of an endangered orchid species. Molecular Ecology, 2017, 26, 1687-1701.	3.9	59
51	Variation in Mycorrhizal Associations with Tulasnelloid Fungi among Populations of Five Dactylorhiza Species. PLoS ONE, 2012, 7, e42212.	2.5	59
52	Effects of humanâ€mediated pollinator impoverishment on floral traits and mating patterns in a shortâ€ived herb: an experimental approach. Functional Ecology, 2012, 26, 189-197.	3.6	58
53	Temporal changes (1986–1999) in populations of primrose (Primula vulgaris Huds.) in an agricultural landscape and implications for conservation. Biological Conservation, 2002, 105, 11-25.	4.1	56
54	Spatiotemporal structure of genetic variation of a spreading plant metapopulation on dynamic riverbanks along the Meuse River. Heredity, 2006, 96, 471-478.	2.6	56

#	Article	IF	Citations
55	Among-Population Variation in Microbial Community Structure in the Floral Nectar of the Bee-Pollinated Forest Herb Pulmonaria officinalis L. PLoS ONE, 2013, 8, e56917.	2.5	55
56	Mycorrhizal Associations and Trophic Modes in Coexisting Orchids: An Ecological Continuum between Auto- and Mixotrophy. Frontiers in Plant Science, 2017, 8, 1497.	3.6	55
57	Fitness variation and genetic diversity in small, remnant populations of the food deceptive orchid Orchis purpurea. Biological Conservation, 2007, 139, 203-210.	4.1	54
58	Rosenbergiella australoborealis sp. nov., Rosenbergiella collisarenosi sp. nov. and Rosenbergiella epipactidis sp. nov., three novel bacterial species isolated from floral nectar. Systematic and Applied Microbiology, 2014, 37, 402-411.	2.8	53
59	The relationship between reproductive success and demographic structure in remnant populations of Primula veris. Acta Oecologica, 2003, 24, 247-253.	1.1	52
60	Sexual reproduction, clonal diversity and genetic differentiation in patchily distributed populations of the temperate forest herb Paris quadrifolia (Trilliaceae). Oecologia, 2006, 147, 434-444.	2.0	52
61	Genetic diversity within and between remnant populations of the endangered calcareous grassland plant Globularia bisnagarica L Conservation Genetics, 2007, 8, 293-303.	1.5	52
62	Mycorrhizal associations and reproductive isolation in three closely related Orchis species. Annals of Botany, 2011, 107, 347-356.	2.9	52
63	Sweet Scents: Nectar Specialist Yeasts Enhance Nectar Attraction of a Generalist Aphid Parasitoid Without Affecting Survival. Frontiers in Plant Science, 2018, 9, 1009.	3.6	52
64	Consequences of prolonged clonal growth on local and regional genetic structure and fruiting success of the forest perennial Maianthemum bifolium. Oikos, 2006, 112, 21-30.	2.7	51
65	Pollen deposition rates and the functioning of distyly in the perennial Pulmonaria officinalis (Boraginaceae). Plant Systematics and Evolution, 2008, 273, 1-12.	0.9	51
66	Mycorrhizal symbioses and the evolution of trophic modes in plants. Journal of Ecology, 2019, 107, 1567-1581.	4.0	51
67	The Waiting Room Hypothesis revisited by orchids: were orchid mycorrhizal fungi recruited among root endophytes?. Annals of Botany, 2022, 129, 259-270.	2.9	51
68	FIRE INCREASES INVASIVE SPREAD OF MOLINIA CAERULEA MAINLY THROUGH CHANGES IN DEMOGRAPHIC PARAMETERS., 2005, 15, 2097-2108.		50
69	Canopy closure shapes clonal diversity and fineâ€scale genetic structure in the dioecious understorey perennial <i>Mercurialis perennis</i>). Journal of Ecology, 2009, 97, 404-414.	4.0	50
70	Interregional variation in the floristic recovery of postâ€agricultural forests. Journal of Ecology, 2011, 99, 600-609.	4.0	50
71	Demographic effects of extreme weather events on a shortâ€lived calcareous grassland species: stochastic life table response experiments. Journal of Ecology, 2010, 98, 255-267.	4.0	49
72	Multigenerational analysis of spatial structure in the terrestrial, foodâ€deceptive orchid <i>Orchis mascula</i> . Journal of Ecology, 2009, 97, 206-216.	4.0	48

#	Article	IF	Citations
73	Impacts of Restored Patch Density and Distance from Natural Forests on Colonization Success. Restoration Ecology, 2003, 11, 417-423.	2.9	47
74	Landscape genetics of the selfâ€compatible forest herb <i>Geum urbanum</i> : effects of habitat age, fragmentation and local environment. Molecular Ecology, 2007, 16, 4171-4179.	3.9	47
75	Does mycorrhizal specificity affect orchid decline and rarity?. American Journal of Botany, 2012, 99, 1655-1665.	1.7	46
76	Microbial diversity in the floral nectar of seven <i>Epipactis</i> (Orchidaceae) species. MicrobiologyOpen, 2013, 2, 644-658.	3.0	46
77	The impact of yeast presence in nectar on bumble bee behavior and fitness. Ecological Monographs, 2020, 90, e01393.	5.4	46
78	Effects of population size and forest management on genetic diversity and structure of the tuberous orchid Orchis mascula. Conservation Genetics, 2009, 10, 161-168.	1.5	45
79	Habitat-driven variation in mycorrhizal communities in the terrestrial orchid genus Dactylorhiza. Scientific Reports, 2016, 6, 37182.	3.3	45
80	Effect of Habitat Deterioration on Population Dynamics and Extinction Risks in a Previously Common Perennial. Conservation Biology, 2005, 19, 1633-1643.	4.7	44
81	Nonrandom spatial structuring of orchids in a hybrid zone of three <i>Orchis</i> species. New Phytologist, 2012, 193, 454-464.	7.3	44
82	LifeÂhistory evolution under climate change and its influence on the population dynamics of a longâ€lived plant. Journal of Ecology, 2015, 103, 798-808.	4.0	44
83	The impact of life form on the architecture of orchid mycorrhizal networks in tropical forest. Oikos, 2019, 128, 1254-1264.	2.7	43
84	Rapid loss of genetic variation in a founding population of Primula elatior (Primulaceae) after colonization. Annals of Botany, 2009, 103, 777-783.	2.9	42
85	Differences in dichogamy and herkogamy contribute to higher selfing in contrasting environments in the annual Blackstonia perfoliata (Gentianaceae). Annals of Botany, 2013, 111, 651-661.	2.9	41
86	The importance of autonomous selfing in preventing hybridization in three closely related plant species. Journal of Ecology, 2016, 104, 601-610.	4.0	41
87	Buffering effects of soil seed banks on plant community composition in response to land use and climate. Global Ecology and Biogeography, 2021, 30, 128-139.	5.8	41
88	Morphâ€ratio variation, population size and female reproductive success in distylous <i>Pulmonaria officinalis</i> (Boraginaceae). Journal of Evolutionary Biology, 2008, 21, 1281-1289.	1.7	40
89	Biogeography of Orchid Mycorrhizas. Ecological Studies, 2017, , 159-177.	1.2	40
90	Biological Flora of the British Isles: <i>Primula veris</i> L Journal of Ecology, 2009, 97, 581-600.	4.0	39

#	Article	IF	Citations
91	Patterns of sex ratio variation and genetic diversity in the dioecious forest perennial Mercurialis perennis. Plant Ecology, 2010, 206, 105-114.	1.6	39
92	Evolutionary demography of iteroparous plants: incorporating non-lethal costs of reproduction into integral projection models. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2831-2840.	2.6	39
93	Nectar bacteria affect life history of a generalist aphid parasitoid by altering nectar chemistry. Functional Ecology, 2017, 31, 2061-2069.	3.6	39
94	Drivers of vegetative dormancy across herbaceous perennial plant species. Ecology Letters, 2018, 21, 724-733.	6.4	39
95	Habitat-specific variation in gut microbial communities and pathogen prevalence in bumblebee queens (Bombus terrestris). PLoS ONE, 2018, 13, e0204612.	2.5	39
96	The demography of terrestrial orchids: life history, population dynamics and conservation. Botanical Journal of the Linnean Society, 2020, 192, 315-332.	1.6	39
97	Evaluating management interventions in small populations of a perennial herb <i>Primula vulgaris</i> vulgaris431-440.	4.0	38
98	Permanent Genetic Resources added to Molecular Ecology Resources Database 1 December 2010–31 January 2011. Molecular Ecology Resources, 2011, 11, 586-589.	4.8	38
99	The effect of demographic correlations on the stochastic population dynamics of perennial plants. Ecological Monographs, 2016, 86, 480-494.	5.4	38
100	Similarity in mycorrhizal communities associating with two widespread terrestrial orchids decays with distance. Journal of Biogeography, 2020, 47, 421-433.	3.0	38
101	Within and Between Plant Variation in Seed Number, Seed Mass and Germinability of Primula elatior: Effect of Population Size. Plant Biology, 2001, 3, 561-568.	3.8	37
102	Fire increases aboveground biomass, seed production and recruitment success of Molinia caerulea in dry heathland. Acta Oecologica, 2005, 28, 299-305.	1.1	36
103	Biological Flora of the British Isles: <i>Gymnadenia conopsea s.l.</i> . Journal of Ecology, 2012, 100, 1269-1288.	4.0	36
104	Arbuscular mycorrhizal fungi in European grasslands under nutrient pollution. Global Ecology and Biogeography, 2019, 28, 1796-1805.	5.8	36
105	Long-term dynamics and population viability in one of the last populations of the endangered Spiranthes spiralis (Orchidaceae) in the Netherlands. Biological Conservation, 2007, 134, 14-21.	4.1	34
106	Seed limitation restricts population growth in shaded populations of a perennial woodland orchid. Ecology, 2010, 91, 119-129.	3.2	34
107	From extensive clone libraries to comprehensive DNA arrays for the efficient and simultaneous detection and identification of orchid mycorrhizal fungi. Journal of Microbiological Methods, 2010, 80, 76-85.	1.6	34
108	Range size variation, nestedness and species turnover of orchid species along an altitudinal gradient on RÃ@union Island: Implications for conservation. Biological Conservation, 2007, 136, 388-397.	4.1	33

#	Article	IF	CITATIONS
109	Floral display size and spatial distribution of potential mates affect pollen deposition and female reproductive success in distylousPulmonaria officinalis(Boraginaceae). Plant Biology, 2009, 12, 597-603.	3.8	33
110	Extremely low genotypic diversity and sexual reproduction in isolated populations of the self-incompatible lily-of-the-valley (Convallaria majalis) and the role of the local forest environment. Annals of Botany, 2010, 105, 769-776.	2.9	33
111	Temporal and spatial genetic variation in a metapopulation of the annual <i>Erysimum cheiranthoides </i> i>on stony river banks. Journal of Ecology, 2009, 97, 131-141.	4.0	32
112	Mycorrhizal Fungal Diversity and Community Composition in Two Closely Related Platanthera (Orchidaceae) Species. PLoS ONE, 2016, 11, e0164108.	2.5	32
113	Biological Flora of the British Isles: <i> Primula vulgaris</i> Huds. (<i>P. acaulis</i> (L.) Hill). Journal of Ecology, 2009, 97, 812-833.	4.0	31
114	Evidence for demographic bottlenecks and limited gene flow leading to low genetic diversity in a rare thistle. Conservation Genetics, 2010, 11, 1979-1987.	1.5	31
115	Sapromyiophily in the native orchid, <i>Bulbophyllum variegatum</i> , on Réunion (Mascarene) Tj ETQq1	. 0.784314 rgB1	Г {Overlock
116	Biased morph ratios and skewed mating success contribute to loss of genetic diversity in the distylous Pulmonaria officinalis. Annals of Botany, 2012, 109, 227-235.	2.9	31
117	Changes in pin-thrum ratios in populations of the heterostyle Primula vulgaris Huds.: Does imbalance affect population persistence?. Flora: Morphology, Distribution, Functional Ecology of Plants, 2002, 197, 326-331.	1.2	30
118	Effects of flood events on the genetic structure of riparian populations of the grassland plant Origanum vulgare. Biological Conservation, 2009, 142, 870-878.	4.1	30
119	Impact of herbivory on flowering behaviour and life history trade-offs in a polycarpic herb: a 10-year experiment. Oecologia, 2011, 166, 293-303.	2.0	30
120	Disruption of the distylous syndrome in Primula veris. Annals of Botany, 2015, 115, 27-39.	2.9	30
121	Impact of microbial communities on floral nectar chemistry: Potential implications for biological control of pest insects. Basic and Applied Ecology, 2016, 17, 189-198.	2.7	30
122	Is sexual organ reciprocity related to legitimate pollen deposition in distylous <i>Pulmonaria</i> (Boraginaceae)?. Oikos, 2018, 127, 1216-1224.	2.7	30
123	Effects of host species, environmental filtering and forest age on community assembly of ectomycorrhizal fungi in fragmented forests. Fungal Ecology, 2018, 36, 89-98.	1.6	30
124	Impact of mate availability, population size, and spatial aggregation of morphs on sexual reproduction in a distylous, aquatic plant. American Journal of Botany, 2007, 94, 119-127.	1.7	29
125	Genetic erosion explains deviation from demographic response to disturbance and year variation in relic populations of the perennial (i>Primula vulgaris (i>). Journal of Ecology, 2007, 95, 960-972.	4.0	28
126	Effects of coppicing on demographic structure, fruit and seed set in Orchis mascula. Basic and Applied Ecology, 2008, 9, 392-400.	2.7	28

#	Article	IF	Citations
127	EFFECTS OF STAND AGE ON THE DEMOGRAPHY OF A TEMPERATE FOREST HERB IN POSTâ€AGRICULTURAL FORESTS. Ecology, 2008, 89, 3480-3489.	3.2	28
128	Importance of autonomous selfing is inversely related to population size and pollinator availability in a monocarpic plant. American Journal of Botany, 2011, 98, 1834-1840.	1.7	28
129	Latitudinal variation in mycorrhizal diversity associated with a European orchid. Journal of Biogeography, 2019, 46, 968-980.	3.0	28
130	Do fungal associates of co-occurring orchids promote seed germination of the widespread orchid species Gymnadenia conopsea?. Mycorrhiza, 2020, 30, 221-228.	2.8	28
131	Reproductive isolation and hybridization in sympatric populations of three Dactylorhiza species (Orchidaceae) with different ploidy levels. Annals of Botany, 2012, 109, 709-720.	2.9	27
132	Strong differences in genetic structure across disjunct, edge, and core populations of the distylous forest herb <i>Pulmonaria officinalis</i> (Boraginaceae). American Journal of Botany, 2012, 99, 1809-1818.	1.7	27
133	Biosurfactant production by <i>Pseudomonas</i> strains isolated from floral nectar. Journal of Applied Microbiology, 2015, 118, 1370-1384.	3.1	27
134	Effects of agricultural fungicides on microorganisms associated with floral nectar: susceptibility assays and field experiments. Environmental Science and Pollution Research, 2016, 23, 19776-19786.	5.3	27
135	Nonrandom seedling establishment corresponds with distanceâ€dependent decline in mycorrhizal abundance in two terrestrial orchids. New Phytologist, 2016, 211, 255-264.	7.3	27
136	Temporal turnover in mycorrhizal interactions: a proof of concept with orchids. New Phytologist, 2021, 230, 1690-1699.	7.3	27
137	Asymmetric gene introgression in two closely related Orchis species: evidence from morphometric and genetic analyses. BMC Evolutionary Biology, 2012, 12, 178.	3.2	26
138	The impact of spatial isolation and local habitat conditions on colonization of recent forest stands by ectomycorrhizal fungi. Forest Ecology and Management, 2018, 429, 84-92.	3.2	26
139	Diversity and community structure of ericoid mycorrhizal fungi in European bogs and heathlands across a gradient of nitrogen deposition. New Phytologist, 2020, 228, 1640-1651.	7.3	26
140	Rapid Buildup of Genetic Diversity in Founder Populations of the Gynodioecious Plant Species Origanum vulgare after Semi-Natural Grassland Restoration. PLoS ONE, 2013, 8, e67255.	2.5	26
141	Species coexistence in simple microbial communities: unravelling the phenotypic landscape of coâ€occurring <scp><i>M</i></scp> <i>etschnikowia</i> >species in floral nectar. Environmental Microbiology, 2016, 18, 1850-1862.	3.8	25
142	Immigrant and extrinsic hybrid seed inviability contribute to reproductive isolation between forest and dune ecotypes of <i>Epipactis helleborine</i> i> (Orchidaceae). Oikos, 2018, 127, 73-84.	2.7	25
143	Large population sizes mitigate negative effects of variable weather conditions on fruit set in two spring woodland orchids. Biology Letters, 2009, 5, 495-498.	2.3	24
144	Population genetic diversity of the clonal self-incompatible herbaceous plant <i>Linaria vulgaris</i> along an urbanization gradient. Biological Journal of the Linnean Society, 2015, 116, 603-613.	1.6	24

#	Article	IF	CITATIONS
145	Volatiles of bacteria associated with parasitoid habitats elicit distinct olfactory responses in an aphid parasitoid and its hyperparasitoid. Functional Ecology, 2020, 34, 507-520.	3.6	24
146	Symbiont switching and trophic mode shifts in Orchidaceae. New Phytologist, 2021, 231, 791-800.	7. 3	24
147	Temporal and spatial variation in flower and fruit production in a food-deceptive orchid: a five-year study. Plant Biology, 2010, 12, 145-153.	3.8	23
148	Transmission of genetic variation from the adult generation to naturally established seedling cohorts in small forest stands of pedunculate oak (Quercus robur L.). Forest Ecology and Management, 2014, 312, 19-27.	3.2	23
149	Recent range expansion of a terrestrial orchid corresponds with climate-driven variation in its population dynamics. Oecologia, 2016, 181, 435-448.	2.0	23
150	Fungi isolated from host protocorms accelerate symbiotic seed germination in an endangered orchid species (Dendrobium chrysotoxum) from southern China. Mycorrhiza, 2020, 30, 529-539.	2.8	23
151	Yeastâ€"nectar interactions: metacommunities and effects on pollinators. Current Opinion in Insect Science, 2021, 44, 35-40.	4.4	23
152	The species pool concept applied to forests in a fragmented landscape: dispersal limitation versus habitat limitation. Journal of Vegetation Science, 2002, 13, 27.	2.2	23
153	Biological Flora of the British Isles: <i>Orchis mascula</i> (L.) L Journal of Ecology, 2009, 97, 360-377.	4.0	22
154	Severe outbreeding and inbreeding depression maintain mating system differentiation in <i><scp>E</scp>pipactis</i> (<scp>O</scp> rchidaceae). Journal of Evolutionary Biology, 2016, 29, 352-359.	1.7	22
155	Adult Parasitoids of Honeydew-Producing Insects Prefer Honeydew Sugars to Cover their Energetic Needs. Journal of Chemical Ecology, 2016, 42, 1028-1036.	1.8	22
156	Microbial diversity in the floral nectar of Linaria vulgaris along an urbanization gradient. BMC Ecology, 2016, 16 , 18 .	3.0	22
157	Nectar yeasts of the <i>Metschnikowia </i> clade are highly susceptible to azole antifungals widely used in medicine and agriculture. FEMS Yeast Research, 2016, 16, fov115.	2.3	22
158	Rapid response to habitat restoration by the perennial Primula veris as revealed by demographic monitoring. Plant Ecology, 2005, 176, 143-156.	1.6	21
159	Densityâ€dependent mating and reproductive assurance in the temperate forest herb <i>Paris quadrifolia</i> (Trilliaceae). American Journal of Botany, 2008, 95, 294-298.	1.7	21
160	Patterns of hybridization between diploid and derived allotetraploid species of <i>Dactylorhiza</i> (Orchidaceae) coâ€occurring in Belgium. American Journal of Botany, 2011, 98, 946-955.	1.7	21
161	Contributions of Covariance: Decomposing the Components of Stochastic Population Growth in <i>Cypripedium calceolus</i> American Naturalist, 2013, 181, 410-420.	2.1	21
162	Biological Flora of the British Isles: <i><scp>E</scp>pipactis palustris</i> . Journal of Ecology, 2014, 102, 1341-1355.	4.0	21

#	Article	IF	CITATIONS
163	The impact of flower morphology and pollinator community composition on pollen transfer in the distylous Primula veris. Botanical Journal of the Linnean Society, 2018, 186, 414-424.	1.6	21
164	Local abiotic conditions are more important than landscape context for structuring arbuscular mycorrhizal fungal communities in the roots of a forest herb. Oecologia, 2019, 190, 149-157.	2.0	21
165	Reinstatement of traditional mowing regimes counteracts population senescence in the rare perennial Primula vulgaris. Applied Vegetation Science, 2007, 10, 351-360.	1.9	20
166	The impact of individual inaccuracy of reciprocal herkogamy on legitimate pollen deposition and seed set in a distylous selfâ€incompatible herb. Journal of Ecology, 2020, 108, 81-93.	4.0	20
167	Crop wild relatives: more common ground for breeders and ecologists. Frontiers in Ecology and the Environment, 2012, 10, 121-121.	4.0	18
168	Addition of pollen increases growth of nectar-living yeasts. FEMS Microbiology Letters, 2019, 366, .	1.8	18
169	Associative learning and memory retention of nectar yeast volatiles in a generalist parasitoid. Animal Behaviour, 2019, 153, 137-146.	1.9	18
170	Identification and application of bacterial volatiles to attract a generalist aphid parasitoid: from laboratory to greenhouse assays. Pest Management Science, 2021, 77, 930-938.	3.4	18
171	Pollination Success and Reproductive Output in Experimental Populations of the Selfâ€Incompatible Primula vulgaris. International Journal of Plant Sciences, 2007, 168, 571-578.	1.3	17
172	Effects of pollen and nectar inoculation by yeasts, bacteria or both on bumblebee colony development. Oecologia, 2021, 195, 689-703.	2.0	17
173	The Meuse river as a corridor for range expansion of the exotic plant species Sisymbrium austriacum: evidence for long-distance seed dispersal. Biological Invasions, 2010, 12, 553-561.	2.4	16
174	Biological Flora of the British Isles: <i>Spiranthes spiralis </i> (L.) Chevall Journal of Ecology, 2010, 98, 1253-1267.	4.0	16
175	Transatlantic invasion routes and adaptive potential in North American populations of the invasive glossy buckthorn, <i>Frangula alnus </i> . Annals of Botany, 2016, 118, 1089-1099.	2.9	16
176	Forest edge effects on the mycorrhizal communities of the dual-mycorrhizal tree species Alnus glutinosa (L.) Gaertn Science of the Total Environment, 2019, 666, 703-712.	8.0	16
177	From Diverse Origins to Specific Targets: Role of Microorganisms in Indirect Pest Biological Control. Insects, 2020, 11, 533.	2.2	16
178	Mycorrhizal Communities and Isotope Signatures in Two Partially Mycoheterotrophic Orchids. Frontiers in Plant Science, 2021, 12, 618140.	3.6	16
179	Accurate detection and quantification of seasonal abundance of American bullfrog (Lithobates) Tj ETQq1 1 0.784	43 <u>1</u> 4 rgBT	 Overlock (16
180	Stochastic LTRE analysis of the effects of herbivory on the population dynamics of a perennial grassland herb. Oikos, 2012, 121, 211-218.	2.7	15

#	Article	IF	CITATIONS
181	Biological Flora of the British Isles: <i>Pulmonaria officinalis</i> . Journal of Ecology, 2013, 101, 1353-1368.	4.0	15
182	Hidden founder effects: smallâ€scale spatial genetic structure in recently established populations of the grassland specialist plant <i>AnthyllisÂvulneraria</i> . Molecular Ecology, 2015, 24, 2715-2728.	3.9	15
183	\hat{a} €" Reduced fecundity and genetic diversity in small populations of rewarding versus deceptive orchid species: a meta-analysis. Plant Ecology and Evolution, 2015, 148, 153-159.	0.7	15
184	Geographic variation in floral traits and the capacity of autonomous selfing across allopatric and sympatric populations of two closely related Centaurium species. Scientific Reports, 2017, 7, 46410.	3.3	15
185	Gustatory response and longevity in Aphidius parasitoids and their hyperparasitoid Dendrocerus aphidum. Journal of Pest Science, 2018, 91, 351-360.	3.7	15
186	Hibernation Leads to Altered Gut Communities in Bumblebee Queens (Bombus terrestris). Insects, 2018, 9, 188.	2.2	15
187	The impact of floral morphology on genetic differentiation in two closely related biennial plant species. AoB PLANTS, 2018, 10, ply051.	2.3	15
188	Impact of Climate Change on the Distribution of Four Closely Related Orchis (Orchidaceae) Species. Diversity, 2020, 12, 312.	1.7	15
189	Bacterial phylogeny predicts volatile organic compound composition and olfactory response of an aphid parasitoid. Oikos, 2020, 129, 1415-1428.	2.7	15
190	Impact of management and habitat on demographic traits of Primula vulgarisin an agricultural landscape. Applied Vegetation Science, 2004, 7, 171-182.	1.9	14
191	Conservation of remnant populations of Colchicum autumnale \hat{a} e" The relative importance of local habitat quality and habitat fragmentation. Acta Oecologica, 2009, 35, 69-82.	1.1	14
192	Effects of outcrossing in fragmented populations of the primarily selfing forest herb Geum urbanum. Evolutionary Ecology, 2010, 24, 1353-1364.	1.2	14
193	Tree density and population size affect pollen flow and mating patterns in small fragmented forest stands of pedunculate oak (Quercus robur L.). Forest Ecology and Management, 2014, 328, 254-261.	3.2	14
194	The impact of nectar chemical features on phenotypic variation in two related nectar yeasts. FEMS Microbiology Ecology, 2015, 91, .	2.7	14
195	The Architecture of the Network of Orchid–Fungus Interactions in Nine Co-occurring Dendrobium Species. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	14
196	Genetic Diversity and Spatial Genetic Structure of the Grassland Perennial Saxifraga granulata along Two River Systems. PLoS ONE, 2015, 10, e0130463.	2.5	14
197	Mating system evolution under strong clonality: towards self-compatibility or self-incompatibility?. Evolutionary Ecology, 2008, 22, 483-486.	1.2	13
198	Evolutionary trends in the distylous genus Pulmonaria (Boraginaceae): Evidence of ancient hybridization and current interspecific gene flow. Molecular Phylogenetics and Evolution, 2016, 98, 63-73.	2.7	13

#	Article	IF	Citations
199	Surviving in the absence of flowers: do nectar yeasts rely on overwintering bumblebee queens to complete their annual life cycle?. FEMS Microbiology Ecology, 2018, 94, .	2.7	13
200	The Impact of Human Pressure and Climate Change on the Habitat Availability and Protection of Cypripedium (Orchidaceae) in Northeast China. Plants, 2021, 10, 84.	3.5	13
201	Biological Flora of the British Isles: <i> Paris quadrifolia</i> L Journal of Ecology, 2008, 96, 833-844.	4.0	12
202	Clonal plants: beyond the patterns—ecological and evolutionary dynamics of asexual reproduction. Evolutionary Ecology, 2010, 24, 1393-1397.	1.2	12
203	The effect of drought stress on heterozygosity–fitness correlations in pedunculate oak (Quercus) Tj ETQq1 1 C).784314 r	gBT/Overlo
204	Co-Cultures of Mycorrhizal Fungi Do Not Increase Germination and Seedling Development in the Epiphytic Orchid Dendrobium nobile. Frontiers in Plant Science, 2020, 11, 571426.	3.6	12
205	Lack of strong selection pressures maintains wide variation in floral traits in a food-deceptive orchid. Annals of Botany, 2020, 126, 445-453.	2.9	12
206	Parasitism by endoparasitoid wasps alters the internal but not the external microbiome in host caterpillars. Animal Microbiome, 2021, 3, 73.	3.8	12
207	Mycorrhizal Switching and the Role of Fungal Abundance in Seed Germination in a Fully Mycoheterotrophic Orchid, Gastrodia confusoides. Frontiers in Plant Science, 2021, 12, 775290.	3.6	12
208	A comparison of the population genetic structure of parasitic Viscum album from two landscapes differing in degree of fragmentation. Plant Systematics and Evolution, 2009, 281, 161-169.	0.9	11
209	Self-incompatibility and pollen limitation in the rare tristylous endemic Hugonia serrata on La Réunion Island. Plant Systematics and Evolution, 2011, 292, 143-151.	0.9	11
210	Absence of Recruitment Limitation in Restored Dune Slacks Suggests That Manual Seed Introduction Can Be a Successful Practice for Restoring Orchid Populations. Restoration Ecology, 2013, 21, 159-162.	2.9	11
211	The impact of extensive clonal growth on fine-scale mating patterns: a full paternity analysis of a lily-of-the-valley population (Convallaria majalis). Annals of Botany, 2013, 111, 623-628.	2.9	11
212	Pollen limitation and the contribution of autonomous selfing to fruit and seed set in a rewarding orchid. American Journal of Botany, 2015, 102, 67-72.	1.7	11
213	Climate change increases ecogeographical isolation between closely related plants. Journal of Ecology, 2019, 107, 167-177.	4.0	10
214	Nitrogen Assimilation Varies Among Clades of Nectar- and Insect-Associated Acinetobacters. Microbial Ecology, 2021, 81, 990-1003.	2.8	10
215	Secondary pollen presentation and the temporal dynamics of stylar hair retraction and style elongation in <i>Campanula trachelium</i> (Campanulaceae). Plant Biology, 2014, 16, 669-676.	3.8	9
216	Niche evolution and historical biogeography of lady slipper orchids in North America and Eurasia. Journal of Biogeography, 2021, 48, 2727-2741.	3.0	9

#	Article	lF	Citations
217	Effects of a Dark Septate Fungal Endophyte on the Growth and Physiological Response of Seedlings to Drought in an Epiphytic Orchid. Frontiers in Microbiology, $0,13,1$	3.5	9
218	Differences in fine-scale spatial genetic structure across the distribution range of the distylous forest herb Pulmonaria officinalis (Boraginaceae). BMC Genetics, 2013, 14, 101.	2.7	8
219	Impact of mating system on range size and niche breadth in <i>Epipactis</i> (Orchidaceae). Annals of Botany, 2020, 126, 1203-1214.	2.9	8
220	The effect of DNA methylation on bumblebee colony development. BMC Genomics, 2021, 22, 73.	2.8	8
221	Range Size and Niche Breadth as Predictors of Climate-Induced Habitat Change in Epipactis (Orchidaceae). Frontiers in Ecology and Evolution, 2022, 10, .	2.2	8
222	Using quantitative eDNA analyses to accurately estimate American bullfrog abundance and to evaluate management efficacy. Environmental DNA, 2022, 4, 1052-1064.	5.8	8
223	Biological flora of the British Isles: <i>Orchis anthropophora</i> (L.) All. (<i>Aceras) Tj ETQq1 1 0.784314 rgBT /C</i>	verlock 1 4.0	O Tf 50 502
224	Development and characterization of microsatellite loci for the primrose Primula vulgaris and successful cross-amplification in the congeneric P. elatior and P. veris. Conservation Genetics Resources, 2014, 6, 653.	0.8	7
225	Mycorrhizal divergence and selection against immigrant seeds in forest and dune populations of the partially mycoheterotrophic Pyrola rotundifolia. Molecular Ecology, 2018, 27, 5228-5237.	3.9	7
226	Low genetic divergence and variation in coastal dune populations of the widespread terrestrial orchid <i>Epipactis helleborine</i> Is a Botanical Journal of the Linnean Society, 2020, 193, 419-430.	1.6	7
227	The Pupal Parasitoid Trichopria drosophilae Is Attracted to the Same Yeast Volatiles as Its Adult Host. Journal of Chemical Ecology, 2021, 47, 788-798.	1.8	7
228	Impact of management and habitat on demographic traits of Primula vulgaris in an agricultural landscape. Applied Vegetation Science, 2004, 7, 171.	1.9	7
229	Microsatellite Primers for the Gynodioecious Grassland PerennialSaxifraga granulata(Saxifragaceae). Applications in Plant Sciences, 2014, 2, 1400040.	2.1	6
230	Biological Flora of the British Isles: <i>Ophrys sphegodes</i> . Journal of Ecology, 2015, 103, 1680-1696.	4.0	6
231	The effect of phenological variation in sex expression on female reproductive success in <i>Saxifraga granulata</i> . American Journal of Botany, 2015, 102, 2116-2123.	1.7	6
232	Changes in the root microbiome of four plant species with different mycorrhizal types across a nitrogen deposition gradient in ombrotrophic bogs. Soil Biology and Biochemistry, 2022, 169, 108673.	8.8	6
233	Addition of fungal inoculum increases seed germination and protocorm formation in a terrestrial orchid. Global Ecology and Conservation, 2022, 38, e02235.	2.1	6
234	Successful reintroduction releases pressure on China's orchid species. Trends in Plant Science, 2022, 27, 211-213.	8.8	5

#	Article	IF	CITATIONS
235	Genetic admixture increases phenotypic diversity in the nectar yeast Metschnikowia reukaufii. Fungal Ecology, 2021, 49, 101016.	1.6	4
236	Extracellular Enzyme Activities and Carbon/Nitrogen Utilization in Mycorrhizal Fungi Isolated From Epiphytic and Terrestrial Orchids. Frontiers in Microbiology, 2021, 12, 787820.	3.5	4
237	The impact of hybridization on longâ€ŧerm persistence of polyploid <i>Dactylorhiza</i> species. American Journal of Botany, 2016, 103, 1829-1837.	1.7	3
238	Analysis of spatial genetic variation reveals genetic divergence among populations of Primula veris associated to contrasting habitats. Scientific Reports, 2017, 7, 8847.	3.3	3
239	The female advantage in natural populations of gynodioecious Plantago coronopus: seed quantity vs. offspring quality. Oecologia, 2017, 185, 653-662.	2.0	2
240	Gene flow allows persistence of a perennial forest herb in a dynamic landscape. , 2012, , 420-430.		2
241	The Effect of Surrounding Vegetation on the Mycorrhizal Fungal Communities of the Temperate Tree Crataegus monogyna Jacq Frontiers in Fungal Biology, 2021, 2, .	2.0	2
242	Germination failure is not a critical stage of reproductive isolation between three congeneric orchid species. American Journal of Botany, 2012, 99, 1884-1890.	1.7	1
243	The Impact of Yeast Presence in Nectar on Bumble Bee Behavior and Fitness. Bulletin of the Ecological Society of America, 2020, 101, e01636.	0.2	O
244	Partner turnover and changes in ectomycorrhizal fungal communities during the early life stages of European beech (Fagus sylvatica L.). Mycorrhiza, 2021, 31, 43-53.	2.8	0