Mette Marie Rosenkilde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2203140/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	International Union of Basic and Clinical Pharmacology. LXXXIX. Update on the Extended Family of Chemokine Receptors and Introducing a New Nomenclature for Atypical Chemokine Receptors. Pharmacological Reviews, 2014, 66, 1-79.	16.0	735
2	Potent Inhibition of HIV-1 Infectivity in Macrophages and Lymphocytes by a Novel CCR5 Antagonist. Science, 1997, 276, 276-279.	12.6	654
3	A Broad-Spectrum Chemokine Antagonist Encoded by Kaposi's Sarcoma-Associated Herpesvirus. Science, 1997, 277, 1656-1659.	12.6	473
4	MOLECULAR MECHANISM OF 7TM RECEPTOR ACTIVATION—A GLOBAL TOGGLE SWITCH MODEL. Annual Review of Pharmacology and Toxicology, 2006, 46, 481-519.	9.4	382
5	Phorbol Esters and SDF-1 Induce Rapid Endocytosis and Down Modulation of the Chemokine Receptor CXCR4. Journal of Cell Biology, 1997, 139, 651-664.	5.2	357
6	Ligand binding and micro-switches in 7TM receptor structures. Trends in Pharmacological Sciences, 2009, 30, 249-259.	8.7	310
7	2-Oleoyl Glycerol Is a GPR119 Agonist and Signals GLP-1 Release in Humans. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E1409-E1417.	3.6	238
8	The impact of short-chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon. American Journal of Physiology - Renal Physiology, 2018, 315, G53-G65.	3.4	235
9	Insulin Secretion Depends on Intra-islet Glucagon Signaling. Cell Reports, 2018, 25, 1127-1134.e2.	6.4	233
10	Molecular Mechanism of AMD3100 Antagonism in the CXCR4 Receptor. Journal of Biological Chemistry, 2004, 279, 3033-3041.	3.4	204
11	Selective recognition of the membrane-bound CX3C chemokine, fractalkine, by the human cytomegalovirus-encoded broad-spectrum receptor US28. FEBS Letters, 1998, 441, 209-214.	2.8	191
12	Tirzepatide is an imbalanced and biased dual GIP and GLP-1 receptor agonist. JCI Insight, 2020, 5, .	5.0	177
13	Agonists and Inverse Agonists for the Herpesvirus 8-encoded Constitutively Active Seven-transmembrane Oncogene Product, ORF-74. Journal of Biological Chemistry, 1999, 274, 956-961.	3.4	169
14	GPR119 as a fat sensor. Trends in Pharmacological Sciences, 2012, 33, 374-381.	8.7	165
15	Biased and G Protein-Independent Signaling of Chemokine Receptors. Frontiers in Immunology, 2014, 5, 277.	4.8	152
16	Bile acids are important direct and indirect regulators of the secretion of appetite- and metabolism-regulating hormones from the gut and pancreas. Molecular Metabolism, 2018, 11, 84-95.	6.5	135
17	AMD3465, a monomacrocyclic CXCR4 antagonist and potent HIV entry inhibitor. Biochemical Pharmacology, 2005, 70, 752-761.	4.4	122
18	Pharmacokinetics of oral and intravenous melatonin in healthy volunteers. BMC Pharmacology & Toxicology, 2016, 17, 8.	2.4	121

#	Article	IF	CITATIONS
19	Epstein-Barr Virus-Encoded BILF1 Is a Constitutively Active G Protein-Coupled Receptor. Journal of Virology, 2005, 79, 536-546.	3.4	118
20	Separate and Combined Glucometabolic Effects of Endogenous Glucose-Dependent Insulinotropic Polypeptide and Glucagon-like Peptide 1 in Healthy Individuals. Diabetes, 2019, 68, 906-917.	0.6	118
21	Molecular Mechanism of Action of Monocyclam Versus Bicyclam Non-peptide Antagonists in the CXCR4 Chemokine Receptor. Journal of Biological Chemistry, 2007, 282, 27354-27365.	3.4	104
22	The minor binding pocket: a major player in 7TM receptor activation. Trends in Pharmacological Sciences, 2010, 31, 567-574.	8.7	99
23	Molecular Pharmacological Phenotyping of EBI2. Journal of Biological Chemistry, 2006, 281, 13199-13208.	3.4	98
24	GIP as a Therapeutic Target in Diabetes and Obesity: Insight From Incretin Co-agonists. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e2710-e2716.	3.6	97
25	Tumorigenesis induced by the HHV8-encoded chemokine receptor requires ligand modulation of high constitutive activity. Journal of Clinical Investigation, 2001, 108, 1789-1796.	8.2	95
26	Virally encoded 7TM receptors. Oncogene, 2001, 20, 1582-1593.	5.9	92
27	Prohormone Convertase 1/3 Is Essential for Processing of the Glucose-dependent Insulinotropic Polypeptide Precursor. Journal of Biological Chemistry, 2006, 281, 11050-11057.	3.4	92
28	The Gluco- and Liporegulatory and Vasodilatory Effects of Glucose-Dependent Insulinotropic Polypeptide (GIP) Are Abolished by an Antagonist of the Human GIP Receptor. Diabetes, 2017, 66, 2363-2371.	0.6	88
29	Similar activation of signal transduction pathways by the herpesvirus-encoded chemokine receptors US28 and ORF74. Virology, 2004, 325, 241-251.	2.4	83
30	Glucagon-like peptide-1 (GLP-1) receptor agonism or DPP-4 inhibition does not accelerate neoplasia in carcinogen treated mice. Regulatory Peptides, 2012, 179, 91-100.	1.9	81
31	Gut Hormones and Their Effect on Bone Metabolism. Potential Drug Therapies in Future Osteoporosis Treatment. Frontiers in Endocrinology, 2019, 10, 75.	3.5	70
32	GIP(3-30)NH2 is an efficacious GIP receptor antagonist in humans: a randomised, double-blinded, placebo-controlled, crossover study. Diabetologia, 2018, 61, 413-423.	6.3	66
33	Human GIP(3-30)NH2 inhibits G protein-dependent as well as G protein-independent signaling and is selective for the GIP receptor with high-affinity binding to primate but not rodent GIP receptors. Biochemical Pharmacology, 2018, 150, 97-107.	4.4	65
34	Evaluation of the incretin effect in humans using GIP and GLP-1 receptor antagonists. Peptides, 2020, 125, 170183.	2.4	61
35	High Constitutive Activity of a Virus-Encoded Seven Transmembrane Receptor in the Absence of the Conserved DRY Motif (Asp-Arg-Tyr) in Transmembrane Helix 3. Molecular Pharmacology, 2005, 68, 11-19.	2.3	60
36	Glucose-Dependent Insulinotropic Polypeptide Augments Glucagon Responses to Hypoglycemia in Type 1 Diabetes. Diabetes, 2015, 64, 72-78.	0.6	60

#	Article	IF	CITATIONS
37	GluVII:06 - A Highly Conserved and Selective Anchor Point for Non-Peptide Ligands in Chemokine Receptors. Current Topics in Medicinal Chemistry, 2006, 6, 1319-1333.	2.1	60
38	Biased and Constitutive Signaling in the CC-chemokine Receptor CCR5 by Manipulating the Interface between Transmembrane Helices 6 and 7. Journal of Biological Chemistry, 2013, 288, 12511-12521.	3.4	59
39	Differential CCR7 Targeting in Dendritic Cells by Three Naturally Occurring CC-Chemokines. Frontiers in Immunology, 2016, 7, 568.	4.8	59
40	Oxyntomodulin: Actions and role in diabetes. Peptides, 2018, 100, 48-53.	2.4	59
41	Selective Elimination of High Constitutive Activity or Chemokine Binding in the Human Herpesvirus 8 Encoded Seven Transmembrane Oncogene ORF74. Journal of Biological Chemistry, 2000, 275, 26309-26315.	3.4	56
42	Glucose-dependent insulinotropic polypeptide (GIP) receptor antagonists as anti-diabetic agents. Peptides, 2018, 100, 173-181.	2.4	56
43	GIP-(3–42) does not antagonize insulinotropic effects of GIP at physiological concentrations. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E468-E475.	3.5	54
44	Identification of a Novel Site within G Protein α Subunits Important for Specificity of Receptor-G Protein Interaction. Molecular Pharmacology, 2004, 66, 250-259.	2.3	50
45	The CXC Chemokine Receptor Encoded by Herpesvirus saimiri, ECRF3, Shows Ligand-regulated Signaling through Gi, Gq, and G12/13 Proteins but Constitutive Signaling Only through Gi and G12/13 Proteins. Journal of Biological Chemistry, 2004, 279, 32524-32533.	3.4	49
46	Identification and Characterization of Small Molecule Modulators of the Epstein–Barr Virus-Induced Gene 2 (EBI2) Receptor. Journal of Medicinal Chemistry, 2014, 57, 3358-3368.	6.4	49
47	Molecular Interaction of a Potent Nonpeptide Agonist with the Chemokine Receptor CCR8. Molecular Pharmacology, 2007, 72, 327-340.	2.3	47
48	Molecular Characterization of Oxysterol Binding to the Epstein-Barr Virus-induced Gene 2 (GPR183). Journal of Biological Chemistry, 2012, 287, 35470-35483.	3.4	46
49	In vivo and in vitro degradation of peptide YY _{3–36} to inactive peptide YY _{3–34} in humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R866-R874.	1.8	46
50	An atlas of O-linked glycosylation on peptide hormones reveals diverse biological roles. Nature Communications, 2020, 11, 4033.	12.8	46
51	GLP-2 and GIP exert separate effects on bone turnover: A randomized, placebo-controlled, crossover study in healthy young men. Bone, 2019, 125, 178-185.	2.9	45
52	Pharmacokinetics of highâ€dose intravenous melatonin in humans. Journal of Clinical Pharmacology, 2016, 56, 324-329.	2.0	44
53	Interaction of Chemokines with their Receptors – From Initial Chemokine Binding to Receptor Activating Steps. Current Medicinal Chemistry, 2014, 21, 3594-3614.	2.4	44
54	Rationally designed chemokine-based toxin targeting the viral G protein-coupled receptor US28 potently inhibits cytomegalovirus infection in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8427-8432.	7.1	43

METTE MARIE ROSENKILDE

#	Article	IF	CITATIONS
55	The Role of Incretins on Insulin Function and Glucose Homeostasis. Endocrinology, 2021, 162, .	2.8	43
56	Positive Versus Negative Modulation of Different Endogenous Chemokines for CC-chemokine Receptor 1 by Small Molecule Agonists through Allosteric Versus Orthosteric Binding. Journal of Biological Chemistry, 2008, 283, 23121-23128.	3.4	42
57	Truncation of CXCL12 by CD26 reduces its CXC chemokine receptor 4- and atypical chemokine receptor 3-dependent activity on endothelial cells and lymphocytes. Biochemical Pharmacology, 2017, 132, 92-101.	4.4	42
58	Dendritic Cells and CCR7 Expression: An Important Factor for Autoimmune Diseases, Chronic Inflammation, and Cancer. International Journal of Molecular Sciences, 2021, 22, 8340.	4.1	42
59	Ligand Modulation of the Epstein-Barr Virus-induced Seven-transmembrane Receptor EBI2. Journal of Biological Chemistry, 2011, 286, 29292-29302.	3.4	41
60	Allosteric and Orthosteric Sites in CC Chemokine Receptor (CCR5), a Chimeric Receptor Approach. Journal of Biological Chemistry, 2011, 286, 37543-37554.	3.4	41
61	G Protein-Coupled Receptors in the Sweet Spot: Glycosylation and other Post-translational Modifications. ACS Pharmacology and Translational Science, 2020, 3, 237-245.	4.9	41
62	Viral GPCR US28 can signal in response to chemokine agonists of nearly unlimited structural degeneracy. ELife, 2018, 7, .	6.0	41
63	Activation of the CXCR3 Chemokine Receptor through Anchoring of a Small Molecule Chelator Ligand between TM-III, -IV, and -VI. Molecular Pharmacology, 2007, 71, 930-941.	2.3	40
64	The glucagon-like peptide 2 receptor is expressed in enteric neurons and not in the epithelium of the intestine. Peptides, 2015, 67, 20-28.	2.4	40
65	Biased signaling of lipids and allosteric actions of synthetic molecules for GPR119. Biochemical Pharmacology, 2016, 119, 66-75.	4.4	40
66	Kaposi Sarcoma-associated Herpes Virus Targets the Lymphotactin Receptor with Both a Broad Spectrum Antagonist vCCL2 and a Highly Selective and Potent Agonist vCCL3. Journal of Biological Chemistry, 2007, 282, 17794-17805.	3.4	38
67	Physiology of the Incretin Hormones, <scp>GIP</scp> and <scp>GLP</scp> â€1—Regulation of Release and Posttranslational Modifications. , 2019, 9, 1339-1381.		38
68	GIP and GLP-1 Receptor Antagonism During a Meal in Healthy Individuals. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e725-e738.	3.6	37
69	Natural agonist enhancing bis-His zinc-site in transmembrane segment V of the tachykinin NK3receptor. FEBS Letters, 1998, 439, 35-40.	2.8	36
70	Oxysterolâ€EBI2 signaling in immune regulation and viral infection. European Journal of Immunology, 2014, 44, 1904-1912.	2.9	35
71	Discovery and Mapping of an Intracellular Antagonist Binding Site at the Chemokine Receptor CCR2. Molecular Pharmacology, 2014, 86, 358-368.	2.3	35
72	Virus-encoded chemokine receptors – putative novel antiviral drug targets. Neuropharmacology, 2005, 48, 1-13.	4.1	33

#	Article	IF	CITATIONS
73	Structural Motifs of Importance for the Constitutive Activity of the Orphan 7TM Receptor EBI2: Analysis of Receptor Activation in the Absence of an Agonist. Molecular Pharmacology, 2008, 74, 1008-1021.	2.3	32
74	Effect of Intracoronary and Intravenous Melatonin on Myocardial Salvage Index in Patients with ST-Elevation Myocardial Infarction: a Randomized Placebo Controlled Trial. Journal of Cardiovascular Translational Research, 2017, 10, 470-479.	2.4	32
75	Paracrine crosstalk between intestinal L- and D-cells controls secretion of glucagon-like peptide-1 in mice. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E1081-E1093.	3.5	32
76	Natural nitration of CXCL12 reduces its signaling capacity and chemotactic activity <i>in vitro</i> and abrogates intra-articular lymphocyte recruitment <i>in vivo</i> . Oncotarget, 2016, 7, 62439-62459.	1.8	32
77	Perspective: Implications of Ligand–Receptor Binding Kinetics for Therapeutic Targeting of G Protein-Coupled Receptors. ACS Pharmacology and Translational Science, 2020, 3, 179-189.	4.9	31
78	Small molecule antagonism of oxysterolâ€induced Epstein–Barr virus induced gene 2 (EBI2) activation. FEBS Open Bio, 2013, 3, 156-160.	2.3	30
79	Amantadine inhibits known and novel ion channels encoded by SARS-CoV-2 in vitro. Communications Biology, 2021, 4, 1347.	4.4	29
80	GLP-1 and GIP receptor signaling in beta cells – A review of receptor interactions and co-stimulation. Peptides, 2022, 151, 170749.	2.4	29
81	Circulating Glucagon 1-61 Regulates Blood Glucose by Increasing Insulin Secretion and Hepatic Glucose Production. Cell Reports, 2017, 21, 1452-1460.	6.4	28
82	Modulation in Selectivity and Allosteric Properties of Small-Molecule Ligands for CC-Chemokine Receptors. Journal of Medicinal Chemistry, 2012, 55, 8164-8177.	6.4	27
83	Enhanced agonist residence time, internalization rate and signalling of the GIP receptor variant [E354Q] facilitate receptor desensitization and longâ€term impairment of the GIP system. Basic and Clinical Pharmacology and Toxicology, 2020, 126, 122-132.	2.5	27
84	Molecular interactions of full-length and truncated GIP peptides with the GIP receptor $\hat{a} \in A$ comprehensive review. Peptides, 2020, 125, 170224.	2.4	27
85	The E92K Melanocortin 1 Receptor Mutant Induces cAMP Production and Arrestin Recruitment but Not ERK Activity Indicating Biased Constitutive Signaling. PLoS ONE, 2011, 6, e24644.	2.5	27
86	Glucose and amino acid metabolism in mice depend mutually on glucagon and insulin receptor signaling. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E660-E673.	3.5	26
87	Biased signaling of G protein-coupled receptors – From a chemokine receptor CCR7 perspective. General and Comparative Endocrinology, 2018, 258, 4-14.	1.8	25
88	GPR183 Regulates Interferons, Autophagy, and Bacterial Growth During Mycobacterium tuberculosis Infection and Is Associated With TB Disease Severity. Frontiers in Immunology, 2020, 11, 601534.	4.8	25
89	The role of endogenous GIP and GLP-1 in postprandial bone homeostasis. Bone, 2020, 140, 115553.	2.9	25
90	Amino acids differ in their capacity to stimulate GLP-1 release from the perfused rat small intestine and stimulate secretion by different sensing mechanisms. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E874-E885.	3.5	25

#	Article	IF	CITATIONS
91	The future of antiviral immunotoxins. Journal of Leukocyte Biology, 2016, 99, 911-925.	3.3	24
92	GLP-1 Val8: A Biased GLP-1R Agonist with Altered Binding Kinetics and Impaired Release of Pancreatic Hormones in Rats. ACS Pharmacology and Translational Science, 2021, 4, 296-313.	4.9	24
93	The anorexic hormone Peptide YY ₃₋₃₆ is rapidly metabolized to inactive Peptide YY ₃₋₃₄ inÂvivo. Physiological Reports, 2015, 3, e12455.	1.7	23
94	Biased action of the CXCR4-targeting drug plerixafor is essential for its superior hematopoietic stem cell mobilization. Communications Biology, 2021, 4, 569.	4.4	23
95	Probing Biased Signaling in Chemokine Receptors. Methods in Enzymology, 2016, 570, 155-186.	1.0	22
96	Novel Chemokine-Based Immunotoxins for Potent and Selective Targeting of Cytomegalovirus Infected Cells. Journal of Immunology Research, 2017, 2017, 1-12.	2.2	22
97	Signaling via G proteins mediates tumorigenic effects of GPR87. Cellular Signalling, 2017, 30, 9-18.	3.6	21
98	Glucoseâ€lowering effects and mechanisms of the bile acidâ€sequestering resin sevelamer. Diabetes, Obesity and Metabolism, 2018, 20, 1623-1631.	4.4	21
99	Arrestinâ€independent constitutive endocytosis of GPR125/ADGRA3. Annals of the New York Academy of Sciences, 2019, 1456, 186-199.	3.8	21
100	Increased Body Weight and Fat Mass After Subchronic GIP Receptor Antagonist, but Not GLP-2 Receptor Antagonist, Administration in Rats. Frontiers in Endocrinology, 2019, 10, 492.	3.5	21
101	Recent advances of GIP and future horizons. Peptides, 2020, 125, 170230.	2.4	21
102	Effects of endogenous GIP in patients with type 2 diabetes. European Journal of Endocrinology, 2021, 185, 33-45.	3.7	21
103	Targeting Herpesvirus Reliance of the Chemokine System. Current Drug Targets, 2006, 7, 103-118.	2.1	20
104	CCL19 with CCL21-tail displays enhanced glycosaminoglycan binding with retained chemotactic potency in dendritic cells. Journal of Leukocyte Biology, 2018, 104, 401-411.	3.3	20
105	GIP's effect on bone metabolism is reduced by the selective GIP receptor antagonist GIP(3–30)NH2. Bone, 2020, 130, 115079.	2.9	20
106	Identification and Functional Comparison of Seven-Transmembrane G-Protein-Coupled BILF1 Receptors in Recently Discovered Nonhuman Primate Lymphocryptoviruses. Journal of Virology, 2015, 89, 2253-2267.	3.4	19
107	Discovery and Characterization of Biased Allosteric Agonists of the Chemokine Receptor CXCR3. Journal of Medicinal Chemistry, 2016, 59, 2222-2243.	6.4	19
108	Varicella zoster virus glycoprotein C increases chemokine-mediated leukocyte migration. PLoS Pathogens, 2017, 13, e1006346.	4.7	19

#	Article	IF	CITATIONS
109	A Pilot Study Showing Acute Inhibitory Effect of GLPâ€1 on the Bone Resorption Marker CTX in Humans. JBMR Plus, 2019, 3, e10209.	2.7	19
110	Ex vivo treatment of cytomegalovirus in human donor lungs using a novel chemokine-based immunotoxin. Journal of Heart and Lung Transplantation, 2022, 41, 287-297.	0.6	19
111	Extracellular Disulfide Bridges Serve Different Purposes in Two Homologous Chemokine Receptors, CCR1 and CCR5. Molecular Pharmacology, 2013, 84, 335-345.	2.3	18
112	Autocrine CCL19 blocks dendritic cell migration toward weak gradients of CCL21. Cytotherapy, 2016, 18, 1187-1196.	0.7	18
113	Biased Signaling of CCL21 and CCL19 Does Not Rely on N-Terminal Differences, but Markedly on the Chemokine Core Domains and Extracellular Loop 2 of CCR7. Frontiers in Immunology, 2019, 10, 2156.	4.8	18
114	Distinct Roles of Extracellular Domains in the Epstein-Barr Virus-Encoded BILF1 Receptor for Signaling and Major Histocompatibility Complex Class I Downregulation. MBio, 2019, 10, .	4.1	18
115	Neprilysin Inhibition Increases Glucagon Levels in Humans and Mice With Potential Effects on Amino Acid Metabolism. Journal of the Endocrine Society, 2021, 5, bvab084.	0.2	18
116	Structural basis for the constitutive activity and immunomodulatory properties of the Epstein-Barr virus-encoded G protein-coupled receptor BILF1. Immunity, 2021, 54, 1405-1416.e7.	14.3	18
117	The Antiresorptive Effect of GIP, But Not GLP-2, Is Preserved in Patients With Hypoparathyroidism—A Randomized Crossover Study. Journal of Bone and Mineral Research, 2020, 36, 1448-1458.	2.8	17
118	Molecular Interaction of a Potent Nonpeptide Agonist with the Chemokine Receptor CCR8. Molecular Pharmacology, 2007, 72, 327-340.	2.3	17
119	Design, synthesis, and biological evaluation of scaffold-based tripeptidomimetic antagonists for CXC chemokine receptor 4 (CXCR4). Bioorganic and Medicinal Chemistry, 2014, 22, 4759-4769.	3.0	16
120	Oleoyl-lysophosphatidylinositol enhances glucagon-like peptide-1 secretion from enteroendocrine L-cells through GPR119. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 1132-1141.	2.4	16
121	Structure-function guided modeling of chemokine-GPCR specificity for the chemokine XCL1 and its receptor XCR1. Science Signaling, 2019, 12, .	3.6	16
122	The European Research Network on Signal Transduction (ERNEST): Toward a Multidimensional Holistic Understanding of G Protein-Coupled Receptor Signaling. ACS Pharmacology and Translational Science, 2020, 3, 361-370.	4.9	15
123	Multiple Targets for Oxysterols in Their Regulation of the Immune System. Cells, 2021, 10, 2078.	4.1	15
124	Conformational Constraining of Inactive and Active States of a Seven Transmembrane Receptor by Metal Ion Site Engineering in the Extracellular End of Transmembrane Segment V. Molecular Pharmacology, 2006, 70, 1892-1901.	2.3	14
125	Probing the Molecular Interactions between CXC Chemokine Receptor 4 (CXCR4) and an Arginine-Based Tripeptidomimetic Antagonist (KRH-1636). Journal of Medicinal Chemistry, 2015, 58, 8141-8153.	6.4	14
126	EBI2 overexpression in mice leads to B1 B-cell expansion and chronic lymphocytic leukemia–like B-cell malignancies. Blood, 2017, 129, 866-878.	1.4	14

#	Article	IF	CITATIONS
127	Doseâ€dependent efficacy of the glucoseâ€dependent insulinotropic polypeptide (<scp>GIP)</scp> receptor antagonist <scp>GIP</scp> (3â€30) <scp>NH₂</scp> on <scp>GIP</scp> actions in humans. Diabetes, Obesity and Metabolism, 2021, 23, 68-74.	4.4	14
128	A Blunted GPR183/Oxysterol Axis During Dysglycemia Results in Delayed Recruitment of Macrophages to the Lung During <i>Mycobacterium tuberculosis</i> Infection. Journal of Infectious Diseases, 2022, 2219-2228.	4.0	14
129	Biased agonism and allosteric modulation of G proteinâ€coupled receptor 183 – a 7TM receptor also known as Epstein–Barr virusâ€induced gene 2. British Journal of Pharmacology, 2017, 174, 2031-2042.	5.4	13
130	Development of potent and proteolytically stable human neuromedin U receptor agonists. European Journal of Medicinal Chemistry, 2018, 144, 887-897.	5.5	13
131	Investigating GIPR (ant)agonism: A structural analysis of GIP and its receptor. Structure, 2021, 29, 679-693.e6.	3.3	13
132	CIP and GLP-2 together improve bone turnover in humans supporting CIPR-GLP-2R co-agonists as future osteoporosis treatment. Pharmacological Research, 2022, 176, 106058.	7.1	13
133	Loss of Function Glucose-Dependent Insulinotropic Polypeptide Receptor Variants Are Associated With Alterations in BMI, Bone Strength and Cardiovascular Outcomes. Frontiers in Cell and Developmental Biology, 2021, 9, 749607.	3.7	12
134	EBV, the Human Host, and the 7TM Receptors. Progress in Molecular Biology and Translational Science, 2015, 129, 395-427.	1.7	11
135	Progress toward rationally designed small-molecule peptide and peptidomimetic CXCR4 antagonists. Future Medicinal Chemistry, 2015, 7, 1261-1283.	2.3	11
136	Molecular Mechanism of Action for Allosteric Modulators and Agonists in CC-chemokine Receptor 5 (CCR5). Journal of Biological Chemistry, 2016, 291, 26860-26874.	3.4	11
137	Role of Conserved Disulfide Bridges and Aromatic Residues in Extracellular Loop 2 of Chemokine Receptor CCR8 for Chemokine and Small Molecule Binding. Journal of Biological Chemistry, 2016, 291, 16208-16220.	3.4	11
138	Inhibition of HIV Fusion by Small Molecule Agonists through Efficacy-Engineering of CXCR4. ACS Chemical Biology, 2018, 13, 881-886.	3.4	11
139	Structural Features of an Extended C-Terminal Tail Modulate the Function of the Chemokine CCL21. Biochemistry, 2020, 59, 1338-1350.	2.5	11
140	The C-terminal peptide of CCL21 drastically augments CCL21 activity through the dendritic cell lymph node homing receptor CCR7 by interaction with the receptor N-terminus. Cellular and Molecular Life Sciences, 2021, 78, 6963-6978.	5.4	11
141	Attenuation of chemokine receptor function and surface expression as an immunomodulatory strategy employed by human cytomegalovirus is linked to vGPCR US28. Cell Communication and Signaling, 2016, 14, 31.	6.5	10
142	Structureâ€based discovery of novel US28 small molecule ligands with different modes of action. Chemical Biology and Drug Design, 2017, 89, 289-296.	3.2	10
143	Comparing olive oil and C4-dietary oil, a prodrug for the GPR119 agonist, 2-oleoyl glycerol, less energy intake of the latter is needed to stimulate incretin hormone secretion in overweight subjects with type 2 diabetes. Nutrition and Diabetes, 2018, 8, 2.	3.2	10
144	Ligand-selective small molecule modulators of the constitutively active vGPCR US28. European Journal of Medicinal Chemistry, 2018, 155, 244-254.	5.5	10

Mette Marie Rosenkilde

#	Article	IF	CITATIONS
145	EBI2, GPR18, and GPR17 – Three Structurally Related but Biologically Distinct 7TM Receptors. Current Topics in Medicinal Chemistry, 2011, 11, 618-628.	2.1	10
146	64-OR: Postprandial Effects of Endogenous Glucose-Dependent Insulinotropic Polypeptide in Type 2 Diabetes. Diabetes, 2019, 68, .	0.6	10
147	Synthesis and <i>in Vitro</i> Evaluation of Stabilized and Selective Neuromedin U-1 Receptor Agonists. ACS Medicinal Chemistry Letters, 2018, 9, 496-501.	2.8	9
148	Neuromedin U Does Not Act as a Decretin in Rats. Cell Metabolism, 2019, 29, 719-726.e5.	16.2	9
149	Expression Profile of the GLP-1 Receptor in the Gastrointestinal Tract and Pancreas in Adult Female Mice. Endocrinology, 2022, 163, .	2.8	8
150	Molecular and inÂvivo phenotyping of missense variants of the human glucagon receptor. Journal of Biological Chemistry, 2022, 298, 101413.	3.4	8
151	Mutational Landscape of the Proglucagon-Derived Peptides. Frontiers in Endocrinology, 2021, 12, 698511.	3.5	7
152	Sustained effect of glucagon on body weight and blood glucose: Assessed by continuous glucose monitoring in diabetic rats. PLoS ONE, 2018, 13, e0194468.	2.5	7
153	Glucoseâ€dependent insulinotropic polypeptide receptor antagonist treatment causes a reduction in weight gain in ovariectomised high fat dietâ€fed mice. British Journal of Pharmacology, 2022, 179, 4486-4499.	5.4	7
154	Vasopressin receptors V1 _a and V2 are not osmosensors. Physiological Reports, 2015, 3, e12519.	1.7	6
155	Influence of chain length on the activity of tripeptidomimetic antagonists for CXC chemokine receptor 4 (CXCR4). Bioorganic and Medicinal Chemistry, 2017, 25, 646-657.	3.0	6
156	Dual treatment with a fixed ratio of glucagon and insulin increases the therapeutic window of insulin in diabetic rats. Physiological Reports, 2018, 6, e13657.	1.7	6
157	Mutational analysis of CCL20 reveals flexibility of N-terminal amino acid composition and length. Journal of Leukocyte Biology, 2018, 104, 423-434.	3.3	6
158	Discovery of GPR183 Agonists Based on an Antagonist Scaffold. ChemMedChem, 2021, 16, 2623-2627.	3.2	6
159	Molecular Properties and Therapeutic Targeting of the EBV-Encoded Receptor BILF1. Cancers, 2021, 13, 4079.	3.7	6
160	Peroxynitrite Exposure of CXCL12 Impairs Monocyte, Lymphocyte and Endothelial Cell Chemotaxis, Lymphocyte Extravasation in vivo and Anti-HIV-1 Activity. Frontiers in Immunology, 2018, 9, 1933.	4.8	5
161	Rat Cytomegalovirus-encoded γ-chemokine vXCL1 is a highly adapted, species-specific agonist for rat XCR1+ dendritic cells. Journal of Cell Science, 2019, 133, .	2.0	5
162	Three-Dimensional Explant Platform for Studies on Choroid Plexus Epithelium. Frontiers in Cellular Neuroscience, 2020, 14, 108.	3.7	5

#	Article	IF	CITATIONS
163	Insights into agonist-elicited activation of the human glucose-dependent insulinotropic polypeptide receptor. Biochemical Pharmacology, 2021, 192, 114715.	4.4	5
164	Novel agonist―and antagonistâ€based radioligands for the GLPâ€2 receptor ―useful tools for studies of basic GLPâ€2R pharmacology. British Journal of Pharmacology, 2021, , .	5.4	5
165	Acute concomitant glucoseâ€dependent insulinotropic polypeptide receptor antagonism during glucagonâ€like peptide 1 receptor agonism does not affect appetite, resting energy expenditure or food intake in patients with type 2 diabetes and overweight/obesity. Diabetes, Obesity and Metabolism, 2022, 24. 1882-1887.	4.4	5
166	Nâ€terminal alterations turn the gut hormone GLPâ€2 into an antagonist with gradual loss of GLPâ€2 receptor selectivity towards more GLPâ€1 receptor interaction. British Journal of Pharmacology, 2022, 179, 4473-4485.	5.4	5
167	Development of highly efficient protocols for extraction and amplification of cytomegalovirus DNA from dried blood spots for detection and genotyping of polymorphic immunomodulatory genes. PLoS ONE, 2019, 14, e0222053.	2.5	4
168	Methods for Studying Endocytotic Pathways of Herpesvirus Encoded G Protein-Coupled Receptors. Molecules, 2020, 25, 5710.	3.8	4
169	The frequency of cytomegalovirus non-ELR UL146 genotypes in neonates with congenital CMV disease is comparable to strains in the background population. BMC Infectious Diseases, 2021, 21, 386.	2.9	4
170	Pharmacological and structure-activity relationship studies of oleoyl-lysophosphatidylinositol synthetic mimetics. Pharmacological Research, 2021, 172, 105822.	7.1	4
171	The non-ELR CXC chemokine encoded by human cytomegalovirus UL146 genotype 5 contains a C-terminal β-hairpin and induces neutrophil migration as a selective CXCR2 agonist. PLoS Pathogens, 2022, 18, e1010355.	4.7	4
172	Selective Allosteric Modulation of N-Terminally Cleaved, but Not Full Length CCL3 in CCR1. ACS Pharmacology and Translational Science, 2019, 2, 429-441.	4.9	3
173	Functional Properties of Virus-Encoded and Virus-Regulated G Protein-Coupled Receptors. Methods in Pharmacology and Toxicology, 2014, , 45-65.	0.2	3
174	Postprandial Effects of Individual and Combined GIP and GLP-1 Receptor Antagonization in Healthy Subjects. Diabetes, 2018, 67, 145-OR.	0.6	3
175	The glucagon receptor antagonist LY2409021 has no effect on postprandial glucose in type 2 diabetes. European Journal of Endocrinology, 2022, 186, 207-221.	3.7	3
176	Selective Boosting of CCR7-Acting Chemokines; Short Peptides Boost Chemokines with Short Basic Tails, Longer Peptides Boost Chemokines with Long Basic Tails. International Journal of Molecular Sciences, 2022, 23, 1397.	4.1	3
177	GPR183 Is Dispensable for B1 Cell Accumulation and Function, but Affects B2 Cell Abundance, in the Omentum and Peritoneal Cavity. Cells, 2022, 11, 494.	4.1	3
178	G protein oupled receptor pharmacology—The next generation. Basic and Clinical Pharmacology and Toxicology, 2020, 126, 3-4.	2.5	2
179	L-Cell Expression of Melanocortin-4-Receptor Is Marginal in Most of the Small Intestine in Mice and Humans and Direct Stimulation of Small Intestinal Melanocortin-4-Receptors in Mice and Rats Does Not Affect GLP-1 Secretion. Frontiers in Endocrinology, 2021, 12, 690387.	3.5	2
180	Opposing roles of the entero-pancreatic hormone urocortin-3 in glucose metabolism in rats. Diabetologia, 2022, 65, 1018-1031.	6.3	2

#	Article	IF	CITATIONS
181	Identification of a conserved chemokine receptor motif that enables ligand discrimination. Science Signaling, 2022, 15, eabg7042.	3.6	2
182	1976-P: Physiological Effects of GIP(1-30)NH2 in Healthy Subjects. Diabetes, 2019, 68, 1976-P.	0.6	1
183	Epstein-Barr Virus-Encoded BILF1 Orthologues From Porcine Lymphotropic Herpesviruses Display Common Molecular Functionality. Frontiers in Endocrinology, 2022, 13, .	3.5	1
184	The Location of Missense Variants in the Human GIP Gene Is Indicative for Natural Selection. Frontiers in Endocrinology, 0, 13, .	3.5	1
185	Endogenous Glucose-Dependent Insulinotropic Polypeptide Contributes to Sitagliptin-Mediated Improvement in Beta Cell Function in Patients with Type 2 Diabetes. Diabetes, 0, , .	0.6	1
186	The Gβγâ€subunit interacts directly with aquaporinâ€2 (AQP2) and regulates its membrane targeting. FASEB Journal, 2018, 32, 747.3.	0.5	0