Zeljko J Bosnjak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2202396/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ketamine Enhances Human Neural Stem Cell Proliferation and Induces Neuronal Apoptosis via Reactive Oxygen Species–Mediated Mitochondrial Pathway. Anesthesia and Analgesia, 2013, 116, 869-880.	2.2	160
2	Cdk1, PKCÎ' and calcineurin-mediated Drp1 pathway contributes to mitochondrial fission-induced cardiomyocyte death. Biochemical and Biophysical Research Communications, 2014, 453, 710-721.	2.1	110
3	Fatty Acid-Treated Induced Pluripotent Stem Cell-Derived Human Cardiomyocytes Exhibit Adult Cardiomyocyte-Like Energy Metabolism Phenotypes. Cells, 2019, 8, 1095.	4.1	98
4	Recent Insights Into Molecular Mechanisms of Propofol-Induced Developmental Neurotoxicity: Implications for the Protective Strategies. Anesthesia and Analgesia, 2016, 123, 1286-1296.	2.2	85
5	Ketamine Induces Toxicity in Human Neurons Differentiated from Embryonic Stem Cells via Mitochondrial Apoptosis Pathway. Current Drug Safety, 2012, 7, 106-119.	0.6	73
6	Age-related Attenuation of Isoflurane Preconditioning in Human Atrial Cardiomyocytes. Anesthesiology, 2008, 108, 612-620.	2.5	64
7	MicroRNA-21 Mediates Isoflurane-induced Cardioprotection against Ischemia–Reperfusion Injury <i>via</i> Akt/Nitric Oxide Synthase/Mitochondrial Permeability Transition Pore Pathway. Anesthesiology, 2015, 123, 786-798.	2.5	63
8	Altered Mitochondrial Dynamics Contributes to Propofol-induced Cell Death in Human Stem Cell–derived Neurons. Anesthesiology, 2015, 123, 1067-1083.	2.5	54
9	Stem Cell Therapies in Cardiovascular Disease. Journal of Cardiothoracic and Vascular Anesthesia, 2019, 33, 209-222.	1.3	54
10	Chronic Co-Administration of Sepiapterin and <scp>l</scp> -Citrulline Ameliorates Diabetic Cardiomyopathy and Myocardial Ischemia/Reperfusion Injury in Obese Type 2 Diabetic Mice. Circulation: Heart Failure, 2016, 9, e002424.	3.9	48
11	Up-regulation of MicroRNA-21 Mediates Isoflurane-induced Protection of Cardiomyocytes. Anesthesiology, 2015, 122, 795-805.	2.5	43
12	Isoflurane Preconditioning Elicits Competent Endogenous Mechanisms of Protection from Oxidative Stress in Cardiomyocytes Derived from Human Embryonic Stem Cells. Anesthesiology, 2010, 113, 906-916.	2.5	41
13	Current status and strategies of long noncoding RNA research for diabetic cardiomyopathy. BMC Cardiovascular Disorders, 2018, 18, 197.	1.7	35
14	Marked Hyperglycemia Attenuates Anesthetic Preconditioning in Human-induced Pluripotent Stem Cell-derived Cardiomyocytes. Anesthesiology, 2012, 117, 735-744.	2.5	35
15	Isoflurane modulates cardiac mitochondrial bioenergetics by selectively attenuating respiratory complexes. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 354-365.	1.0	30
16	Genome-wide differential expression profiling of IncRNAs and mRNAs associated with early diabetic cardiomyopathy. Scientific Reports, 2019, 9, 15345.	3.3	29
17	Targeted Modification of Mitochondrial ROS Production Converts High Glucose-Induced Cytotoxicity to Cytoprotection: Effects on Anesthetic Preconditioning. Journal of Cellular Physiology, 2017, 232, 216-224.	4.1	26
18	Standards for preclinical research and publications in developmental anaesthetic neurotoxicity: expert opinion statement from the SmartTots preclinical working group. British Journal of Anaesthesia, 2020, 124, 585-593.	3.4	26

Zeljko J Bosnjak

#	Article	IF	CITATIONS
19	Biphasic effect of metformin on human cardiac energetics. Translational Research, 2021, 229, 5-23.	5.0	24
20	Developmental neurotoxicity screening using human embryonic stem cells. Experimental Neurology, 2012, 237, 207-210.	4.1	23
21	Cardiomyocyte GTP Cyclohydrolase 1 Protects the Heart Against Diabetic Cardiomyopathy. Scientific Reports, 2016, 6, 27925.	3.3	23
22	Vascular endothelial growth factor regulation of endothelial nitric oxide synthase phosphorylation is involved in isoflurane cardiac preconditioning. Cardiovascular Research, 2019, 115, 168-178.	3.8	22
23	Comparison of Cardiomyocyte Differentiation Potential between Type 1 Diabetic Donor- and Nondiabetic Donor-Derived Induced Pluripotent Stem Cells. Cell Transplantation, 2015, 24, 2491-2504.	2.5	21
24	High Glucose Attenuates Anesthetic Cardioprotection in Stem-Cell–Derived Cardiomyocytes: The Role of Reactive Oxygen Species and Mitochondrial Fission. Anesthesia and Analgesia, 2016, 122, 1269-1279.	2.2	19
25	MicroRNAs: New Players in Anesthetic-Induced Developmental Neurotoxicity. Pharmaceutica Analytica Acta, 2015, 06, 357.	0.2	15
26	Transgenic overexpression of GTP cyclohydrolase 1 in cardiomyocytes ameliorates post-infarction cardiac remodeling. Scientific Reports, 2017, 7, 3093.	3.3	15
27	Signaling network between the dysregulated expression of microRNAs and mRNAs in propofol-induced developmental neurotoxicity in mice. Scientific Reports, 2018, 8, 14172.	3.3	14
28	Microarray analysis of long non-coding RNA and mRNA expression profiles in diabetic cardiomyopathy using human induced pluripotent stem cell–derived cardiomyocytes. Diabetes and Vascular Disease Research, 2019, 16, 57-68.	2.0	12
29	Recent Insight on the Non-coding RNAs in Mesenchymal Stem Cell-Derived Exosomes: Regulatory and Therapeutic Role in Regenerative Medicine and Tissue Engineering. Frontiers in Cardiovascular Medicine, 2021, 8, 737512.	2.4	12
30	Identification and analysis of circulating long non-coding RNAs with high significance in diabetic cardiomyopathy. Scientific Reports, 2021, 11, 2571.	3.3	10
31	Biomarkers, Genetics, and Epigenetic Studies to Explore the Neurocognitive Effects of Anesthesia in Children. Journal of Neurosurgical Anesthesiology, 2016, 28, 384-388.	1.2	9
32	The application of remote ischemic conditioning in cardiac surgery. F1000Research, 2017, 6, 928.	1.6	8
33	Coronary Flow Response to Vasodilators in Isolated Hearts Cold Perfused for One Day with Butanedione Monoxime. Endothelium: Journal of Endothelial Cell Research, 1994, 2, 87-98.	1.7	7
34	Emerging Role of Long Noncoding RNAs in Perioperative Neurocognitive Disorders and Anesthetic-Induced Developmental Neurotoxicity. Anesthesia and Analgesia, 2021, 132, 1614-1625.	2.2	5
35	Emerging model in anesthetic developmental neurotoxicity: human stem cells. International Journal of Clinical Anesthesiology, 2013, 1, 1002.	0.0	5
36	Modeling Precision Cardio-Oncology: Using Human-Induced Pluripotent Stem Cells for Risk Stratification and Prevention. Current Oncology Reports, 2021, 23, 77.	4.0	2

Zeljko J Bosnjak

#	Article	IF	CITATIONS
37	Comparison of Cardioprotective Potency of Preconditioning by General Anesthetics Desflurane and Sevoflurane. FASEB Journal, 2007, 21, A867.	0.5	1
38	miRâ€21 Knockdown Attenuates the Cardioprotective Effects of Isoflurane. FASEB Journal, 2013, 27, lb679.	0.5	1
39	Microarray Analysis of Long Nonâ€coding RNA and mRNA Expression Profiles in Diabetic Cardiomyopathy Using Human iPSCsâ€Derived Cardiomyocytes FASEB Journal, 2018, 32, 580.15.	0.5	1
40	Cardiac protection by volatile anesthetics with Na + /Ca 2+ exchanger inhibitors in isolated guinea pig hearts. FASEB Journal, 2006, 20, A319.	0.5	0
41	Isofluraneâ€induced preconditioning: electroâ€mechanical uncoupling and mitochondrial K _{ATP} channel. FASEB Journal, 2006, 20, LB10.	0.5	Ο
42	Nitric oxide is not involved in the attenuation of complex lâ€linked mitochondrial state 3 respiration by isoflurane. FASEB Journal, 2007, 21, A863.	0.5	0
43	Role of VDAC in vascular responses to isoflurane FASEB Journal, 2008, 22, 744.20.	0.5	Ο
44	Isoflurane Preconditioning Delays Opening of Mitochondrial Permeability Transition Pore via Protein Kinase C Signaling Pathway. FASEB Journal, 2008, 22, 750.13.	0.5	0
45	Isofluraneâ€induced cardioprotection: role of sarcolemmal KATP channels and mitochondria. FASEB Journal, 2011, 25, 1097.7.	0.5	Ο
46	Isoflurane Increases Mitochondrial Free Ca 2+ by Attenuating the Na + /Ca 2+ Exchanger Activity. FASEB Journal, 2012, 26, 888.4.	0.5	0
47	The Role of MicroRNA in Anestheticâ€Induced Cardiac Preconditioning. FASEB Journal, 2012, 26, 1136.3.	0.5	Ο
48	Substrate â€dependent Action of Isoflurane on Electron Transport Chain Complexes. FASEB Journal, 2013, 27, 1209.9.	0.5	0
49	MicroRNA expression profiles in a human induced pluripotent stem cellâ€derived model of diabetic cardiomyopathy. FASEB Journal, 2019, 33, 713.2.	0.5	О