Devrim Coskun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2202142/publications.pdf

Version: 2024-02-01

25 papers 2,450 citations

394421 19 h-index 25 g-index

26 all docs

26 docs citations

26 times ranked

3005 citing authors

#	Article	IF	CITATIONS
1	The controversies of silicon's role in plant biology. New Phytologist, 2019, 221, 67-85.	7.3	439
2	Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nature Plants, 2017, 3, 17074.	9.3	376
3	How Plant Root Exudates Shape the Nitrogen Cycle. Trends in Plant Science, 2017, 22, 661-673.	8.8	322
4	Sodium as nutrient and toxicant. Plant and Soil, 2013, 369, 1-23.	3.7	289
5	The Role of Silicon in Higher Plants under Salinity and Drought Stress. Frontiers in Plant Science, 2016, 7, 1072.	3.6	259
6	Membrane fluxes, bypass flows, and sodium stress in rice: the influence of silicon. Journal of Experimental Botany, 2018, 69, 1679-1692.	4.8	102
7	The nitrogen–potassium intersection: membranes, metabolism, and mechanism. Plant, Cell and Environment, 2017, 40, 2029-2041.	5.7	99
8	Rapid Ammonia Gas Transport Accounts for Futile Transmembrane Cycling under NH3/NH4 Â+ Toxicity in Plant Roots Â. Plant Physiology, 2013, 163, 1859-1867.	4.8	95
9	Capacity and Plasticity of Potassium Channels and High-Affinity Transporters in Roots of Barley and Arabidopsis Â. Plant Physiology, 2013, 162, 496-511.	4.8	59
10	⁴² K analysis of sodiumâ€induced potassium efflux in barley: mechanism and relevance to salt tolerance. New Phytologist, 2010, 186, 373-384.	7.3	56
11	K+ Efflux and Retention in Response to NaCl Stress Do Not Predict Salt Tolerance in Contrasting Genotypes of Rice (Oryza sativa L.). PLoS ONE, 2013, 8, e57767.	2.5	46
12	Regulation and mechanism of potassium release from barley roots: an <i>in planta</i> ⁴² K ⁺ analysis. New Phytologist, 2010, 188, 1028-1038.	7.3	41
13	Silver ions disrupt K+ homeostasis and cellular integrity in intact barley (Hordeum vulgare L.) roots. Journal of Experimental Botany, 2012, 63, 151-162.	4.8	40
14	Nutrient constraints on terrestrial carbon fixation: The role of nitrogen. Journal of Plant Physiology, 2016, 203, 95-109.	3.5	38
15	Root-Apex Proton Fluxes at the Centre of Soil-Stress Acclimation. Trends in Plant Science, 2020, 25, 794-804.	8.8	35
16	The physiology of channelâ€mediated K ⁺ acquisition in roots of higher plants. Physiologia Plantarum, 2014, 151, 305-312.	5.2	24
17	Lsi2: A black box in plant silicon transport. Plant and Soil, 2021, 466, 1-20.	3.7	22
18	How high do ion fluxes go? A re-evaluation of the two-mechanism model of K + transport in plant roots. Plant Science, 2016, 243, 96-104.	3.6	21

#	Article	IF	CITATIONS
19	Potassium physiology from Archean to Holocene: A higher-plant perspective. Journal of Plant Physiology, 2021, 262, 153432.	3.5	21
20	Potassium and nitrogen poising: Physiological changes and biomass gains in rice and barley. Canadian Journal of Plant Science, 2014, 94, 1085-1089.	0.9	19
21	Si permeability of a deficient Lsi1 aquaporin in tobacco can be enhanced through a conserved residue substitution. Plant Direct, 2019, 3, e00163.	1.9	16
22	Plasma-membrane electrical responses to salt and osmotic gradients contradict radiotracer kinetics, and reveal Na+-transport dynamics in rice (Oryza sativa L.). Planta, 2019, 249, 1037-1051.	3.2	10
23	In defence of the selective transport and role of silicon in plants. New Phytologist, 2019, 223, 514-516.	7.3	9
24	Complexity of potassium acquisition: How much flows through channels?. Plant Signaling and Behavior, 2013, 8, e24799.	2.4	6
25	Measuring Fluxes of Mineral Nutrients and Toxicants in Plants with Radioactive Tracers. Journal of Visualized Experiments, 2014 , , .	0.3	4