
## Simon Gilroy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2201888/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | THE ROLE OF ROOT EXUDATES IN RHIZOSPHERE INTERACTIONS WITH PLANTS AND OTHER ORGANISMS.<br>Annual Review of Plant Biology, 2006, 57, 233-266.                                                                                        | 8.6  | 3,654     |
| 2  | Allelopathy and Exotic Plant Invasion: From Molecules and Genes to Species Interactions. Science, 2003, 301, 1377-1380.                                                                                                             | 6.0  | 914       |
| 3  | Glutamate triggers long-distance, calcium-based plant defense signaling. Science, 2018, 361, 1112-1115.                                                                                                                             | 6.0  | 624       |
| 4  | Salt stress-induced Ca <sup>2+</sup> waves are associated with rapid, long-distance root-to-shoot<br>signaling in plants. Proceedings of the National Academy of Sciences of the United States of America,<br>2014, 111, 6497-6502. | 3.3  | 558       |
| 5  | Elevation of cytoplasmic calcium by caged calcium or caged inositol trisphosphate initiates stomatal closure. Nature, 1990, 346, 769-771.                                                                                           | 13.7 | 531       |
| 6  | A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends in Plant<br>Science, 2014, 19, 623-630.                                                                                               | 4.3  | 478       |
| 7  | Through form to function: root hair development and nutrient uptake. Trends in Plant Science, 2000,<br>5, 56-60.                                                                                                                    | 4.3  | 458       |
| 8  | ROS, Calcium, and Electric Signals: Key Mediators of Rapid Systemic Signaling in Plants. Plant<br>Physiology, 2016, 171, 1606-1615.                                                                                                 | 2.3  | 455       |
| 9  | Arabidopsis H+-PPase AVP1 Regulates Auxin-Mediated Organ Development. Science, 2005, 310, 121-125.                                                                                                                                  | 6.0  | 403       |
| 10 | Oscillations in extracellular pH and reactive oxygen species modulate tip growth of<br><i>Arabidopsis</i> root hairs. Proceedings of the National Academy of Sciences of the United States<br>of America, 2007, 104, 20996-21001.   | 3.3  | 372       |
| 11 | Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins. Nature, 2003,<br>423, 651-654.                                                                                                               | 13.7 | 343       |
| 12 | Ca2+ Regulates Reactive Oxygen Species Production and pH during Mechanosensing<br>in <i>Arabidopsis</i> Roots Â. Plant Cell, 2009, 21, 2341-2356.                                                                                   | 3.1  | 337       |
| 13 | Cytoplasmic free calcium distributions during the development of root hairs of Arabidopsis thaliana.<br>Plant Journal, 1997, 12, 427-439.                                                                                           | 2.8  | 321       |
| 14 | Mapping the Functional Roles of Cap Cells in the Response of Arabidopsis Primary Roots to Gravity1.<br>Plant Physiology, 1998, 116, 213-222.                                                                                        | 2.3  | 321       |
| 15 | A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes. Journal of Cell Biology, 2005, 169, 127-138.                                                                  | 2.3  | 314       |
| 16 | Abscisic acid signal transduction in guard cells is mediated by phospholipase D activity. Proceedings of the United States of America, 1999, 96, 12192-12197.                                                                       | 3.3  | 287       |
| 17 | Microtubules regulate tip growth and orientation in root hairs ofArabidopsis thaliana. Plant<br>Journal, 1999, 17, 657-665.                                                                                                         | 2.8  | 278       |
| 18 | Rapid, Long-Distance Electrical and Calcium Signaling in Plants. Annual Review of Plant Biology, 2016,<br>67, 287-307.                                                                                                              | 8.6  | 277       |

| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Changes in Root Cap pH Are Required for the Gravity Response of the Arabidopsis Root. Plant Cell, 2001, 13, 907-921.                                                                                                                           | 3.1  | 253       |
| 20 | Orchestrating rapid longâ€distance signaling in plants with Ca <sup>2+</sup> , <scp>ROS</scp> and electrical signals. Plant Journal, 2017, 90, 698-707.                                                                                        | 2.8  | 250       |
| 21 | Spatial coordination of aluminium uptake, production of reactive oxygen species, callose production and wall rigidification in maize roots. Plant, Cell and Environment, 2006, 29, 1309-1318.                                                  | 2.8  | 237       |
| 22 | A ROS-Assisted Calcium Wave Dependent on the AtRBOHD NADPH Oxidase and TPC1 Cation Channel Propagates the Systemic Response to Salt Stress. Plant Physiology, 2016, 171, 1771-1784.                                                            | 2.3  | 231       |
| 23 | Root hair growth in Arabidopsis thaliana is directed by calcium and an endogenous polarity. Planta,<br>1997, 203, 495-505.                                                                                                                     | 1.6  | 227       |
| 24 | A 90-kD Phospholipase D from Tobacco Binds to Microtubules and the Plasma Membrane. Plant Cell, 2001, 13, 2143-2158.                                                                                                                           | 3.1  | 225       |
| 25 | Dynamics of auxinâ€dependent Ca <sup>2+</sup> and pH signaling in root growth revealed by integrating highâ€resolution imaging with automated computer visionâ€based analysis. Plant Journal, 2011, 65, 309-318.                               | 2.8  | 225       |
| 26 | Imaging of the Yellow Cameleon 3.6 Indicator Reveals That Elevations in Cytosolic Ca2+ Follow<br>Oscillating Increases in Growth in Root Hairs of Arabidopsis  Â. Plant Physiology, 2008, 147, 1690-1698.                                      | 2.3  | 212       |
| 27 | Cytoplasmic Free Ca2+ in Arabidopsis Roots Changes in Response to Touch but Not Gravity. Plant<br>Physiology, 1997, 114, 789-800.                                                                                                              | 2.3  | 205       |
| 28 | Touch modulates gravity sensing to regulate the growth of primary roots ofArabidopsis thaliana.<br>Plant Journal, 2003, 33, 435-445.                                                                                                           | 2.8  | 202       |
| 29 | Petunia Phospholipase C1 Is Involved in Pollen Tube Growth. Plant Cell, 2006, 18, 1438-1453.                                                                                                                                                   | 3.1  | 199       |
| 30 | A Sec14p-nodulin domain phosphatidylinositol transfer protein polarizes membrane growth of<br>Arabidopsis thaliana root hairs. Journal of Cell Biology, 2005, 168, 801-812.                                                                    | 2.3  | 195       |
| 31 | Gibberellic acid and abscisic acid coordinately regulate cytoplasmic calcium and secretory activity in<br>barley aleurone protoplasts Proceedings of the National Academy of Sciences of the United States of<br>America, 1992, 89, 3591-3595. | 3.3  | 194       |
| 32 | ROS in plant development. Physiologia Plantarum, 2010, 138, 384-392.                                                                                                                                                                           | 2.6  | 188       |
| 33 | Abscisic acid signal transduction in the barley aleurone is mediated by phospholipase D activity.<br>Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 2697-2702.                                     | 3.3  | 187       |
| 34 | Fundamental Biological Features of Spaceflight: Advancing the Field to Enable Deep-Space Exploration.<br>Cell, 2020, 183, 1162-1184.                                                                                                           | 13.5 | 185       |
| 35 | Alterations in the Cytoskeleton Accompany Aluminum-Induced Growth Inhibition and Morphological Changes in Primary Roots of Maize1. Plant Physiology, 1998, 118, 159-172.                                                                       | 2.3  | 181       |
| 36 | Extracellular ATP signaling in plants. Trends in Cell Biology, 2010, 20, 601-608.                                                                                                                                                              | 3.6  | 180       |

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | ALTERED RESPONSE TO GRAVITY Is a Peripheral Membrane Protein That Modulates Gravity-Induced<br>Cytoplasmic Alkalinization and Lateral Auxin Transport in Plant Statocytes. Plant Cell, 2003, 15,<br>2612-2625.           | 3.1  | 169       |
| 38 | Interplay of Plasma Membrane and Vacuolar Ion Channels, Together with BAK1, Elicits Rapid Cytosolic<br>Calcium Elevations in Arabidopsis during Aphid Feeding. Plant Cell, 2017, 29, 1460-1479.                          | 3.1  | 169       |
| 39 | A 90-kD Phospholipase D from Tobacco Binds to Microtubules and the Plasma Membrane. Plant Cell, 2001, 13, 2143-2158.                                                                                                     | 3.1  | 168       |
| 40 | In Vivo Imaging of Ca <sup>2+</sup> , pH, and Reactive Oxygen Species Using Fluorescent Probes in<br>Plants. Annual Review of Plant Biology, 2011, 62, 273-297.                                                          | 8.6  | 156       |
| 41 | lonic Signaling in Plant Responses to Gravity and Touch. Journal of Plant Growth Regulation, 2002, 21, 71-88.                                                                                                            | 2.8  | 151       |
| 42 | Feeling green: mechanosensing in plants. Trends in Cell Biology, 2009, 19, 228-235.                                                                                                                                      | 3.6  | 150       |
| 43 | Arabidopsis Sphingosine Kinase and the Effects of Phytosphingosine-1-Phosphate on Stomatal Aperture.<br>Plant Physiology, 2005, 137, 724-737.                                                                            | 2.3  | 147       |
| 44 | Calcium-Dependent Protein Kinase Isoforms in Petunia Have Distinct Functions in Pollen Tube Growth,<br>Including Regulating Polarity. Plant Cell, 2006, 18, 867-878.                                                     | 3.1  | 131       |
| 45 | Mechanical Stimuli Modulate Lateral Root Organogenesis. Plant Physiology, 2009, 151, 1855-1866.                                                                                                                          | 2.3  | 130       |
| 46 | Effect of aluminum on cytoplasmic Ca 2+ homeostasis in root hairs of Arabidopsis thaliana (L.). Planta,<br>1998, 206, 378-387.                                                                                           | 1.6  | 123       |
| 47 | Extracellular Nucleotides Elicit Cytosolic Free Calcium Oscillations in Arabidopsis  Â. Plant<br>Physiology, 2010, 154, 705-719.                                                                                         | 2.3  | 121       |
| 48 | Mutual interplay of Ca2+ and ROS signaling in plant immune response. Plant Science, 2019, 283, 343-354.                                                                                                                  | 1.7  | 121       |
| 49 | The promotion of gravitropism inArabidopsisroots upon actin disruption is coupled with the extended alkalinization of the columella cytoplasm and a persistent lateral auxin gradient. Plant Journal, 2004, 39, 113-125. | 2.8  | 118       |
| 50 | Calcium homeostasis in plants. Journal of Cell Science, 1993, 106, 453-462.                                                                                                                                              | 1.2  | 117       |
| 51 | Signal processing and transduction in plant cells: the end of the beginning?. Nature Reviews<br>Molecular Cell Biology, 2001, 2, 307-314.                                                                                | 16.1 | 116       |
| 52 | Using intrinsically fluorescent proteins for plant cell imaging. Plant Journal, 2006, 45, 599-615.                                                                                                                       | 2.8  | 110       |
| 53 | Touch induces ATP release in Arabidopsis roots that is modulated by the heterotrimeric Gâ€protein complex. FEBS Letters, 2009, 583, 2521-2526.                                                                           | 1.3  | 104       |
| 54 | Gravitropism and mechanical signaling in plants. American Journal of Botany, 2013, 100, 111-125.                                                                                                                         | 0.8  | 103       |

| #  | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Aluminum Induces a Decrease in Cytosolic Calcium Concentration in BY-2 Tobacco Cell Cultures1.<br>Plant Physiology, 1998, 116, 81-89.                                                                                                                          | 2.3 | 101       |
| 56 | Abscisic Acid Stimulation of Phospholipase D in the Barley Aleurone Is G-Protein-Mediated and Localized to the Plasma Membrane. Plant Physiology, 2000, 124, 693-702.                                                                                          | 2.3 | 90        |
| 57 | NaRALF, a peptide signal essential for the regulation of root hair tip apoplastic pH in <i>Nicotiana attenuata</i> , is required for root hair development and plant growth in native soils. Plant Journal, 2007, 52, 877-890.                                 | 2.8 | 87        |
| 58 | Gibberellins: regulating genes and germination. New Phytologist, 1998, 140, 363-383.                                                                                                                                                                           | 3.5 | 86        |
| 59 | PRK1, a receptor-like kinase of Petunia inflata, is essential for postmeiotic development of pollen. Plant<br>Journal, 1996, 9, 613-624.                                                                                                                       | 2.8 | 84        |
| 60 | A Cytoplasmic Ca <sup>2+</sup> Functional Assay for Identifying and Purifying Endogenous Cell<br>Signaling Peptides in <i>Arabidopsis</i> Seedlings: Identification of AtRALF1 Peptide. Biochemistry,<br>2008, 47, 6311-6321.                                  | 1.2 | 84        |
| 61 | Root Hair Development. Journal of Plant Growth Regulation, 2002, 21, 383-415.                                                                                                                                                                                  | 2.8 | 80        |
| 62 | Highâ€resolution imaging of Ca <sup>2+</sup> , redox status, ROS and pH using GFP biosensors. Plant<br>Journal, 2012, 70, 118-128.                                                                                                                             | 2.8 | 79        |
| 63 | Systemic signaling in response to wounding and pathogens. Current Opinion in Plant Biology, 2018, 43, 57-62.                                                                                                                                                   | 3.5 | 78        |
| 64 | A Comparison between Quin-2 and Aequorin as Indicators of Cytoplasmic Calcium Levels in Higher<br>Plant Cell Protoplasts. Plant Physiology, 1989, 90, 482-491.                                                                                                 | 2.3 | 77        |
| 65 | Signal Transduction in Barley Aleurone Protoplasts Is Calcium Dependent and Independent Plant Cell,<br>1996, 8, 2193-2209.                                                                                                                                     | 3.1 | 77        |
| 66 | Role of Calcium in Signal Transduction of Commelina Guard Cells. Plant Cell, 1991, 3, 333.                                                                                                                                                                     | 3.1 | 76        |
| 67 | Gibberellins: regulating genes and germination. New Phytologist, 1998, 140, 363-383.                                                                                                                                                                           | 3.5 | 66        |
| 68 | Physiology of the aleurone layer and starchy endosperm during grain development and early seedling growth: new insights from cell and molecular biology. Seed Science Research, 2000, 10, 193-212.                                                             | 0.8 | 63        |
| 69 | Tonoplast-localized Ca <sup>2+</sup> pumps regulate Ca <sup>2+</sup> signals during<br>pattern-triggered immunity in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of<br>Sciences of the United States of America, 2020, 117, 18849-18857. | 3.3 | 62        |
| 70 | The calcium-dependent protein kinase HvCDPK1 mediates the gibberellic acid response of the barley aleurone through regulation of vacuolar function. Plant Journal, 2004, 39, 206-218.                                                                          | 2.8 | 61        |
| 71 | Calcium-Dependent Protein Phosphorylation May Mediate the Gibberellic Acid Response in Barley Aleurone1. Plant Physiology, 1998, 116, 765-776.                                                                                                                 | 2.3 | 60        |
| 72 | A decade of plant signals. BioEssays, 1994, 16, 677-682.                                                                                                                                                                                                       | 1.2 | 59        |

5

| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Sense and sensibility: the use of fluorescent protein-based genetically encoded biosensors in plants.<br>Current Opinion in Plant Biology, 2018, 46, 32-38.                                                   | 3.5  | 59        |
| 74 | FLUORESCENCE MICROSCOPY OF LIVING PLANT CELLS. Annual Review of Plant Biology, 1997, 48, 165-190.                                                                                                             | 14.2 | 58        |
| 75 | Variation in the transcriptome of different ecotypes of <i>Arabidopsis thaliana</i> reveals signatures of oxidative stress in plant responses to spaceflight. American Journal of Botany, 2019, 106, 123-136. | 0.8  | 57        |
| 76 | Sodium chloride reduces growth and cytosolic calcium, but does not affect cytosolic pH, in root<br>hairs of Arabidopsis thaliana L. Journal of Experimental Botany, 2003, 54, 1269-1280.                      | 2.4  | 56        |
| 77 | Adenosine Kinase Modulates Root Gravitropism and Cap Morphogenesis in Arabidopsis. Plant<br>Physiology, 2006, 142, 564-573.                                                                                   | 2.3  | 56        |
| 78 | Plant tropisms. Current Biology, 2008, 18, R275-R277.                                                                                                                                                         | 1.8  | 56        |
| 79 | The exploring root—root growth responses to local environmental conditions. Current Opinion in Plant Biology, 2009, 12, 766-772.                                                                              | 3.5  | 52        |
| 80 | Amyloplast displacement is necessary for gravisensing in Arabidopsis shoots as revealed by a centrifuge microscope. Plant Journal, 2013, 76, 648-660.                                                         | 2.8  | 51        |
| 81 | The fast and the furious: rapid long-range signaling in plants. Plant Physiology, 2021, 185, 694-706.                                                                                                         | 2.3  | 50        |
| 82 | Increases in cytosolic Ca 2+ are not required for abscisic acid-inhibition of inward K + currents in guard cells of Vicia faba L Planta, 2000, 211, 209-217.                                                  | 1.6  | 49        |
| 83 | Expression of the Cameleon calcium biosensor in fungi reveals distinct Ca2+ signatures associated with polarized growth, development, and pathogenesis. Fungal Genetics and Biology, 2012, 49, 589-601.       | 0.9  | 48        |
| 84 | Nitrogen source interacts with ROP signalling in root hair tipâ€growth. Plant, Cell and Environment,<br>2011, 34, 76-88.                                                                                      | 2.8  | 43        |
| 85 | Control of basal jasmonate signalling and defence through modulation of intracellular cation flux capacity. New Phytologist, 2017, 216, 1161-1169.                                                            | 3.5  | 43        |
| 86 | The Sensitivity of Barley Aleurone Tissue to Gibberellin Is Heterogeneous and May Be Spatially<br>Determined1. Plant Physiology, 1999, 120, 361-370.                                                          | 2.3  | 41        |
| 87 | Calmodulin stimulation of unidirectional calcium uptake by the endoplasmic reticulum of barley aleurone. Planta, 1993, 190, 289.                                                                              | 1.6  | 40        |
| 88 | Shootward and rootward: peak terminology for plant polarity. Trends in Plant Science, 2010, 15, 593-594.                                                                                                      | 4.3  | 39        |
| 89 | CML24 is Involved in Root Mechanoresponses and Cortical Microtubule Orientation in Arabidopsis.<br>Journal of Plant Growth Regulation, 2011, 30, 467-479.                                                     | 2.8  | 38        |
| 90 | Plant cell biology in the new millennium: new tools and new insights. American Journal of Botany,<br>2000, 87, 1547-1560.                                                                                     | 0.8  | 37        |

| #   | Article                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Identification and characterization of PiORP1, a Petunia oxysterol-binding-protein related protein<br>involved in receptor-kinase mediated signaling in pollen, and analysis of the ORP gene family in<br>Arabidopsis. Plant Molecular Biology, 2006, 61, 553-565. | 2.0 | 37        |
| 92  | Staying in touch: mechanical signals in plant–microbe interactions. Current Opinion in Plant Biology, 2014, 20, 104-109.                                                                                                                                           | 3.5 | 36        |
| 93  | Editorial: Inter-cellular Electrical Signals in Plant Adaptation and Communication. Frontiers in Plant<br>Science, 2018, 9, 643.                                                                                                                                   | 1.7 | 34        |
| 94  | From common signalling components to cell specific responses: insights from the cereal aleurone.<br>Physiologia Plantarum, 2002, 115, 342-351.                                                                                                                     | 2.6 | 33        |
| 95  | Using GCaMP3 to Study Ca2+ Signaling in Nicotiana Species. Plant and Cell Physiology, 2017, 58, 1173-1184.                                                                                                                                                         | 1.5 | 32        |
| 96  | A New Era for Space Life Science: International Standards for Space Omics Processing. Patterns, 2020, 1, 100148.                                                                                                                                                   | 3.1 | 28        |
| 97  | Changes in Root Cap pH Are Required for the Gravity Response of the Arabidopsis Root. Plant Cell, 2001, 13, 907.                                                                                                                                                   | 3.1 | 27        |
| 98  | An unexpectedly high degree of specialization and a widespread involvement in sterol metabolism<br>among the C. elegans putative aminophospholipid translocases. BMC Developmental Biology, 2008, 8,<br>96.                                                        | 2.1 | 24        |
| 99  | Quantitative ROS bioreporters: A robust toolkit for studying biological roles of ROS in response to abiotic and biotic stresses. Physiologia Plantarum, 2019, 165, 356-368.                                                                                        | 2.6 | 24        |
| 100 | Test of Arabidopsis Space Transcriptome: A Discovery Environment to Explore Multiple Plant Biology<br>Spaceflight Experiments. Frontiers in Plant Science, 2020, 11, 147.                                                                                          | 1.7 | 23        |
| 101 | The rice E3 ubiquitin ligase OsHOS1 modulates the expression of OsRMC, a gene involved in root<br>mechano-sensing, through the interaction with two ERF transcription factors. Plant Physiology, 2015,<br>169, pp.01131.2015.                                      | 2.3 | 22        |
| 102 | NASA GeneLab RNA-seq consensus pipeline: Standardized processing of short-read RNA-seq data.<br>IScience, 2021, 24, 102361.                                                                                                                                        | 1.9 | 20        |
| 103 | Wortmannin-induced vacuole fusion enhances amyloplast dynamics in<br>Arabidopsis <i>zigzag1</i> hypocotyls. Journal of Experimental Botany, 2016, 67, 6459-6472.                                                                                                   | 2.4 | 18        |
| 104 | CYCLIC NUCLEOTIDE-GATED ION CHANNEL 2 modulates auxin homeostasis and signaling. Plant Physiology, 2021, 187, 1690-1703.                                                                                                                                           | 2.3 | 18        |
| 105 | Localization of GAR transformylase in Escherichia coli and mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 6565-6570.                                                                                  | 3.3 | 17        |
| 106 | Auxin Transport and the Integration of Gravitropic Growth. , 0, , 47-77.                                                                                                                                                                                           |     | 15        |
| 107 | Co-regulation of root hair tip growth by ROP GTPases and nitrogen source modulated pH fluctuations. Plant Signaling and Behavior, 2011, 6, 426-429.                                                                                                                | 1.2 | 15        |
| 108 | Changes in Nuclear Shape and Gene Expression in Response to Simulated Microgravity Are LINC<br>Complex-Dependent. International Journal of Molecular Sciences, 2020, 21, 6762.                                                                                     | 1.8 | 15        |

| #   | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Plants eavesdrop on cues produced by snails and induce costly defenses that affect insect herbivores.<br>Oecologia, 2018, 186, 703-710.                                                                                                   | 0.9 | 14        |
| 110 | Signal Transduction in Barley Aleurone Protoplasts Is Calcium Dependent and Independent. Plant Cell, 1996, 8, 2193.                                                                                                                       | 3.1 | 13        |
| 111 | Imaging Changes in Cytoplasmic Calcium Using the Yellow Cameleon 3.6 Biosensor and Confocal<br>Microscopy. Methods in Molecular Biology, 2013, 1009, 291-302.                                                                             | 0.4 | 13        |
| 112 | Calcium and Plant Hormone Action. , 1995, , 298-317.                                                                                                                                                                                      |     | 13        |
| 113 | The Emerging Roles of Phospholipase C in Plant Growth and Development. Plant Cell Monographs, 2010, , 23-37.                                                                                                                              | 0.4 | 11        |
| 114 | Agency, teleonomy and signal transduction in plant systems. Biological Journal of the Linnean Society, 2023, 139, 514-529.                                                                                                                | 0.7 | 8         |
| 115 | A 90-kD Phospholipase D from Tobacco Binds to Microtubules and the Plasma Membrane. Plant Cell, 2001, 13, 2143.                                                                                                                           | 3.1 | 6         |
| 116 | Wide-Field, Real-Time Imaging of Local and Systemic Wound Signals in <em>Arabidopsis</em> . Journal of Visualized Experiments, 2021, , .                                                                                                  | 0.2 | 6         |
| 117 | Evaluating Mechano-Transduction and Touch Responses in Plant Roots. Methods in Molecular<br>Biology, 2015, 1309, 143-150.                                                                                                                 | 0.4 | 6         |
| 118 | Real-time <em>In Vivo </em> Recording of <em>Arabidopsis</em> Calcium Signals During Insect Feeding<br>Using a Fluorescent Biosensor. Journal of Visualized Experiments, 2017, , .                                                        | 0.2 | 5         |
| 119 | Calcium in Root Hair Growth. , 2000, , 141-163.                                                                                                                                                                                           |     | 5         |
| 120 | Plant biologists FRET over stress. ELife, 2014, 3, e02763.                                                                                                                                                                                | 2.8 | 5         |
| 121 | Plant Cell Biology: With Grand Challenges Come Great Possibilities. Frontiers in Plant Science, 2011, 2, 3.                                                                                                                               | 1.7 | 3         |
| 122 | Calcium, Mechanical Signaling, and Tip Growth. Signaling and Communication in Plants, 2011, , 41-61.                                                                                                                                      | 0.5 | 3         |
| 123 | Development of Equipment that Uses Far-Red Light to Impose Seed Dormancy in Arabidopsis for<br>Spaceflight. Gravitational and Space Research: Publication of the American Society for Gravitational<br>and Space Research, 2016, 4, 8-19. | 0.3 | 3         |
| 124 | Pollen tube vs CHUKNORRIS: the action is pulsatile. Journal of Experimental Botany, 2017, 68, 3041-3043.                                                                                                                                  | 2.4 | 2         |
| 125 | Rad-Bio-App: a discovery environment for biologists to explore spaceflight-related radiation exposures. Npj Microgravity, 2021, 7, 15.                                                                                                    | 1.9 | 2         |
| 126 | Mechanisms of Gravity Perception in Higher Plants. , 0, , 3-19.                                                                                                                                                                           |     | 1         |

Mechanisms of Gravity Perception in Higher Plants. , 0, , 3-19. 126

| #   | ARTICLE                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Signal Transduction in Gravitropism. , 0, , 21-45.                                                                                                                         |     | 1         |
| 128 | Plant cell biology—digging deep into cell function. Current Opinion in Plant Biology, 2011, 14, 629-631.                                                                   | 3.5 | 1         |
| 129 | Moving Magnesium. Molecular Plant, 2022, , .                                                                                                                               | 3.9 | 1         |
| 130 | Calcium Signals and Their Regulation. , 0, , 137-162.                                                                                                                      |     | 0         |
| 131 | Spectrum: Fluorescence Imaging on the International Space Station. Microscopy and Microanalysis, 2020, 26, 352-353.                                                        | 0.2 | 0         |
| 132 | Calcium   Calcium Signaling in Plants. , 2021, , 637-645.                                                                                                                  |     | 0         |
| 133 | Using the Automated Botanical Contact Device (ABCD) to Deliver Reproducible, Intermittent Touch<br>Stimulation to Plants. Methods in Molecular Biology, 2022, 2368, 81-94. | 0.4 | Ο         |
| 134 | Analysis of Plant Root Gravitropism. Methods in Molecular Biology, 2022, 2494, 3-16.                                                                                       | 0.4 | 0         |