Huilong Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2201173/publications.pdf

Version: 2024-02-01

34 papers

1,444 citations

623734 14 h-index 27 g-index

34 all docs

34 docs citations

times ranked

34

2608 citing authors

#	Article	IF	CITATIONS
1	High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nature Communications, 2015, 6, 7170.	12.8	707
2	High-performance flexible piezoelectric nanogenerators consisting of porous cellulose nanofibril (CNF)/poly(dimethylsiloxane) (PDMS) aerogel films. Nano Energy, 2016, 26, 504-512.	16.0	131
3	Portable Self-Charging Power System via Integration of a Flexible Paper-Based Triboelectric Nanogenerator and Supercapacitor. ACS Sustainable Chemistry and Engineering, 2019, 7, 18657-18666.	6.7	90
4	A composite generator film impregnated with cellulose nanocrystals for enhanced triboelectric performance. Nanoscale, 2017, 9, 1428-1433.	5.6	67
5	A pH-responsive silica–metal–organic framework hybrid nanoparticle for the delivery of hydrophilic drugs, nucleic acids, and CRISPR-Cas9 genome-editing machineries. Journal of Controlled Release, 2020, 324, 194-203.	9.9	55
6	3D Microstructured Scaffolds to Support Photoreceptor Polarization and Maturation. Advanced Materials, 2018, 30, e1803550.	21.0	45
7	Flexible and Stretchable Microwave Microelectronic Devices and Circuits. IEEE Transactions on Electron Devices, 2017, 64, 1881-1893.	3.0	42
8	Stretchable Twistedâ€Pair Transmission Lines for Microwave Frequency Wearable Electronics. Advanced Functional Materials, 2016, 26, 4635-4642.	14.9	41
9	Versatile Wood Cellulose for Biodegradable Electronics. Advanced Materials Technologies, 2021, 6, 2000928.	5.8	40
10	Flexible and Stretchable Microwave Electronics: Past, Present, and Future Perspective. Advanced Materials Technologies, 2021, 6, 2000759.	5.8	39
11	Highly stretchable and sensitive piezoresistive carbon nanotube/elastomeric triisocyanate-crosslinked polytetrahydrofuran nanocomposites. Journal of Materials Chemistry C, 2016, 4, 460-467.	5.5	26
12	Heterogeneously integrated flexible microwave amplifiers on a cellulose nanofibril substrate. Nature Communications, 2020, 11, 3118.	12.8	26
13	High-performance green semiconductor devices: materials, designs, and fabrication. Semiconductor Science and Technology, 2017, 32, 063002.	2.0	18
14	Releasable Highâ€Performance GaAs Schottky Diodes for Gigahertz Operation of Flexible Bridge Rectifier. Advanced Electronic Materials, 2019, 5, 1800772.	5.1	16
15	Optically Detected Magnetic Resonance for Selective Imaging of Diamond Nanoparticles. Analytical Chemistry, 2018, 90, 769-776.	6.5	14
16	AlGaN/GaN Schottky-Gate HEMTs With UV/Oâ, f-Treated Gate Interface. IEEE Electron Device Letters, 2020, 41, 1488-1491.	3.9	13
17	Characterizations of biodegradable epoxy-coated cellulose nanofibrils (CNF) thin film for flexible microwave applications. Cellulose, 2016, 23, 1989-1995.	4.9	12
18	High-sensitivity silicon ultraviolet p+-i-n avalanche photodiode using ultra-shallow boron gradient doping. Applied Physics Letters, 2017, 111, .	3.3	12

#	Article	IF	CITATIONS
19	Influences of screw dislocations on electroluminescence of AlGaN/AlN-based UVC LEDs. AIP Advances, 2019, 9, .	1.3	11
20	Producing Conductive Graphene–Nanocellulose Paper in One-pot. Journal of Polymers and the Environment, 2019, 27, 148-157.	5.0	9
21	Photolithography-Based Nanopatterning Using Re-entrant Photoresist Profile. ACS Applied Materials & Lamp; Interfaces, 2018, 10, 8117-8123.	8.0	8
22	Radio-frequency flexible and stretchable electronics: the need, challenges and opportunities. Proceedings of SPIE, 2017, , .	0.8	6
23	High power fast flexible electronics: Transparent RF AlGaN/GaN HEMTs on plastic substrates. , 2015, , .		5
24	S- to X-Band Stretchable Inductors and Filters for Gigahertz Soft and Epidermal Electronics. ACS Applied Materials & Diterfaces, 2021, 13, 25053-25063.	8.0	3
25	Materials and design considerations for fast flexible and stretchable electronics. , 2015, , .		2
26	Bendable MOS capacitors formed with printed In0.2Ga0.8As/GaAs/In0.2Ga0.8As trilayer nanomembrane on plastic substrates. Applied Physics Letters, 2017, 110, 133505.	3.3	2
27	Hybrid liquid-metal heat dissipation structure enabled by phase transition for flexible electronics. Semiconductor Science and Technology, 2021, 36, 055007.	2.0	2
28	Wireless Applications of Conformal Bioelectronics. Microsystems and Nanosystems, 2016, , 83-114.	0.1	1
29	Wearable Electronics: Stretchable Twisted-Pair Transmission Lines for Microwave Frequency Wearable Electronics (Adv. Funct. Mater. 26/2016). Advanced Functional Materials, 2016, 26, 4618-4618.	14.9	1
30	Green microwave electronics for the coming era of flexible electronics. , 2016, , .		0
31	Radio-frequency flexible and stretchable electronics (Key note). , 2016, , .		0
32	Cavity enhanced 1.51 $\frac{1}{4}$ m LED with silicon as a hole injector. , 2016, , .		0
33	(Invited) Flexible and Stretchable Microwave Electronics. ECS Meeting Abstracts, 2021, MA2021-01, 1110-1110.	0.0	0
34	Microwave Flexible Electronics Directly Transformed from Foundryâ€Produced, Multilayered Monolithic Integrated Circuits. Advanced Electronic Materials, 2022, 8, .	5.1	0