Jongseong Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2200747/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tuning Surface Plasmon Resonance Responses through Size and Crosslinking Control of Multivalent Protein Binding-Capable Nanoscale Hydrogels. ACS Biomaterials Science and Engineering, 2022, 8, 2878-2889.	5.2	4
2	Analyzing the Effect of Social Distancing Policies on Traffic at Sinchon Station, South Korea, during the COVID-19 Pandemic in 2020 and 2021. International Journal of Environmental Research and Public Health, 2022, 19, 8535.	2.6	1
3	Recapitulating Cardiac Structure and Function In Vitro from Simple to Complex Engineering. Micromachines, 2021, 12, 386.	2.9	8
4	New Tool for Rapid and Accurate Detection of Interleukin-2 and Soluble Interleukin-2 Receptor α in Cancer Diagnosis Using a Bioresponsive Microgel and Multivalent Protein Binding. ACS Applied Materials & Interfaces, 2021, 13, 33782-33789.	8.0	6
5	Modulating cardiomyocyte and fibroblast interaction using layer-by-layer deposition facilitates synchronisation of cardiac macro tissues. Soft Matter, 2020, 16, 428-434.	2.7	12
6	Label-Free Analysis of Multivalent Protein Binding Using Bioresponsive Nanogels and Surface Plasmon Resonance (SPR). ACS Applied Materials & Interfaces, 2020, 12, 5413-5419.	8.0	20
7	Development of Magnetic Torque Stimulation (MTS) Utilizing Rotating Uniform Magnetic Field for Mechanical Activation of Cardiac Cells. Nanomaterials, 2020, 10, 1684.	4.1	6
8	Engineering Biomaterials to Guide Heart Cells for Matured Cardiac Tissue. Coatings, 2020, 10, 925.	2.6	17
9	Multidimensional assembly using layer-by-layer deposition for synchronized cardiac macro tissues. RSC Advances, 2020, 10, 18806-18815.	3.6	2
10	Spectroscopic Assessment of Gold Nanoparticle Biodistribution Using Surface Plasmon Resonance Phenomena. ACS Biomaterials Science and Engineering, 2019, 5, 6389-6394.	5.2	5
11	Traction Microscopy Integrated with Microfluidics for Chemotactic Collective Migration. Journal of Visualized Experiments, 2019, , .	0.3	1
12	Collagen Type I Containing Hybrid Hydrogel Enhances Cardiomyocyte Maturation in a 3D Cardiac Model. Polymers, 2019, 11, 687.	4.5	14
13	Traction microscopy with integrated microfluidics: responses of the multi-cellular island to gradients of HGF. Lab on A Chip, 2019, 19, 1579-1588.	6.0	11
14	Thermoresponsive Behavior of Magnetic Nanoparticle Complexed pNIPAm-co-AAc Microgels. Applied Sciences (Switzerland), 2018, 8, 1984.	2.5	8
15	Comparison of Angiogenic Activities of Three Neuropeptides, Substance P, Secretoneurin, and Neuropeptide Y Using Myocardial Infarction. Tissue Engineering and Regenerative Medicine, 2018, 15, 493-502.	3.7	9
16	INO80 exchanges H2A.Z for H2A by translocating on DNA proximal to histone dimers. Nature Communications, 2017, 8, 15616.	12.8	105
17	Characterization of Responsive Hydrogel Nanoparticles upon Polyelectrolyte Complexation. Polymers, 2017, 9, 66.	4.5	6
18	Direct Thrombus Imaging in Stroke. Journal of Stroke, 2016, 18, 286-296.	3.2	39

JONGSEONG KIM

#	Article	IF	CITATIONS
19	Characterization of a Functional Hydrogel Layer on a Silicon-Based Grating Waveguide for a Biochemical Sensor. Sensors, 2016, 16, 914.	3.8	8
20	On-Rate Switching under Force Increases the Binding of von Willebrand Factor A1 to GPIbα. Biophysical Journal, 2016, 110, 636a.	0.5	0
21	A Hybrid Single Molecule Method to Investigate Sub-Nanometer Dynamics of DNA and Protein at a sub-ms Resolution. Biophysical Journal, 2016, 110, 635a.	0.5	Ο
22	Single-Molecule Observation Reveals Spontaneous Protein Dynamics in the Nucleosome. Journal of Physical Chemistry B, 2016, 120, 8925-8931.	2.6	24
23	Enhancement of the static extinction ratio by using a dual-section distributed feedback laser integrated with an electro-absorption modulator. Journal of the Korean Physical Society, 2016, 69, 745-748.	0.7	Ο
24	Lysine Acetylation Facilitates Spontaneous DNA Dynamics in the Nucleosome. Journal of Physical Chemistry B, 2015, 119, 15001-15005.	2.6	37
25	Force-induced on-rate switching and modulation by mutations in gain-of-function von Willebrand diseases. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4648-4653.	7.1	34
26	Direct observation of ligand-induced receptor dimerization with a bioresponsive hydrogel. RSC Advances, 2014, 4, 65173-65175.	3.6	8
27	Activation of A1 Domain Adhesiveness in von Willebrand Factor by Elongational Force. Blood, 2012, 120, SCI-16-SCI-16.	1.4	0
28	A mechanically stabilized receptor–ligand flex-bond important in the vasculature. Nature, 2010, 466, 992-995.	27.8	251
29	Displacement-Induced Switching Rates of Bioresponsive Hydrogel Microlenses. Chemistry of Materials, 2007, 19, 2527-2532.	6.7	30
30	In-Situ AFM Studies of the Phase-Transition Behavior of Single Thermoresponsive Hydrogel Particles. Langmuir, 2007, 23, 130-137.	3.5	109
31	Influence of Ancillary Binding and Nonspecific Adsorption on Bioresponsive Hydrogel Microlenses. Biomacromolecules, 2007, 8, 1157-1161.	5.4	31
32	Label-Free Biosensing with Hydrogel Microlenses. Angewandte Chemie - International Edition, 2006, 45, 1446-1449.	13.8	148
33	Photoswitchable Microlens Arrays. Angewandte Chemie - International Edition, 2005, 44, 1333-1336.	13.8	90
34	Bioresponsive Hydrogel Microlenses. Journal of the American Chemical Society, 2005, 127, 9588-9592.	13.7	275
35	Colloidal Hydrogel Microlenses. Advanced Materials, 2004, 16, 184-187.	21.0	122
36	Hydrogel Microparticles as Dynamically Tunable Microlenses. Journal of the American Chemical Society, 2004, 126, 9512-9513.	13.7	155

#	Article	IF	CITATIONS
37	INFLUENCE OF ALCOHOL COSURFACTANTS ON SURFACTANT-ENHANCED FLUSHING OF DIESEL-CONTAMINATED SOIL. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2002, 37, 1051-1062.	1.7	3
38	Influence of surfactant structure on surfactant sorption and diesel removal from kaolin soil. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2000, 35, 915-928.	1.7	5