Paolo Lazzeretti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2200663/publications.pdf

Version: 2024-02-01

279 papers

8,087 citations

45 h-index 76900 74 g-index

282 all docs 282 docs citations

times ranked

282

2427 citing authors

#	Article	IF	CITATIONS
1	Dynamic toroidizability as ubiquitous property of atoms and molecules in optical electric fields. Journal of Chemical Physics, 2022, 156, 054106.	3.0	6
2	Origin independent current density vector fields induced by time-dependent magnetic field. I. The LiH molecule. Journal of Chemical Physics, 2022, 156, 154105.	3.0	6
3	Assessment of the performance of DFT functionals in the fulfillment of off-diagonal hypervirial relationships. Physical Chemistry Chemical Physics, 2021, 23, 15268-15274.	2.8	13
4	Physical achirality in geometrically chiral rotamers of hydrazine and boranylborane molecules. Journal of Computational Chemistry, 2021, 42, 1772-1782.	3.3	2
5	Electronic Currents Induced by Optical Fields and Rotatory Power Density in Chiral Molecules. Molecules, 2021, 26, 4195.	3.8	8
6	Origin-Independent Densities of Static and Dynamic Molecular Polarizabilities. Journal of Physical Chemistry Letters, 2021, 12, 8855-8864.	4.6	5
7	Electronic Currents and Anapolar Response Induced in Molecules by Monochromatic Light. Chemistry, 2021, 3, 1022-1036.	2.2	4
8	Anisotropy of the vorticity tensor as a magnetic indicator of aromaticity. Physical Chemistry Chemical Physics, 2020, 22, 1299-1305.	2.8	2
9	Static and optical anapole magnetizabilities and polarizabilities. Journal of Chemical Physics, 2020, 153, 074102.	3.0	4
10	Cubic magnetic response of diamagnetic molecules via third-order electronic current density. Journal of Chemical Physics, 2020, 153, 234112.	3.0	1
11	Tests of accuracy for computed magnetic properties via off-diagonal hypervirial relations. Journal of Chemical Physics, 2020, 153, 214108.	3.0	1
12	Continuity equations for electron charge densities and current densities induced in molecules by electric and magnetic fields. Journal of Chemical Physics, 2019, 151, 114108.	3.0	9
13	Stagnation graphs and separatrices of local bifurcations in velocity and current density planar vector fields. Rendiconti Lincei, 2019, 30, 515-535.	2.2	5
14	Frequency-dependent current density tensors as density functions of dynamic polarizabilities. Journal of Chemical Physics, 2019, 150, 184117.	3.0	13
15	Could Electronic Anapolar Interactions Drive Enantioselective Syntheses in Strongly Nonuniform Magnetic Fields? A Computational Study. Journal of Chemical Theory and Computation, 2019, 15, 961-971.	5. 3	5
16	Anapolar interaction of aminoacids and sugars in nonuniform magnetic fields. Rendiconti Lincei, 2018, 29, 199-207.	2.2	2
17	Current density tensors. Journal of Chemical Physics, 2018, 148, 134109.	3.0	40
18	Polygonal current models for polycyclic aromatic hydrocarbons and graphene sheets of various shapes. Journal of Computational Chemistry, 2018, 39, 21-34.	3.3	11

#	Article	IF	CITATIONS
19	Gauge invariance and origin independence of electronic charge density and current density induced by optical fields. Journal of Chemical Physics, 2018, 149, 154,1968/Math/MathML" altimg="si264.gif"	3.0	18
20	overflow="scroll"> <mml:mrow><mml:msub><mml:mrow><mml:mi>G</mml:mi></mml:mrow><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:msub> and <mml:math altimg="si137.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:< td=""><td>1.2</td><td>11</td></mml:<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math></mml:mrow>	1.2	11
21	mathvariant="italic">CPT <td>1.8</td> <td>18</td>	1.8	18
22	Electric Dipole–Magnetic Dipole Polarizability and Anapole Magnetizability of Hydrogen Peroxide as Functions of the HOOH Dihedral Angle. Journal of Physical Chemistry A, 2017, 121, 9369-9376.	2.5	8
23	Computational study of basis set and electron correlation effects on anapole magnetizabilities of chiral molecules. Journal of Computational Chemistry, 2016, 37, 1552-1558.	3.3	16
24	Topological definition of ring currents. Physical Chemistry Chemical Physics, 2016, 18, 11765-11771.	2.8	17
25	On the definition of molecular dynamic magnetizability. Theoretical Chemistry Accounts, 2015, 134, 1.	1.4	4
26	Theoretical prediction of the optical rotation of chiral molecules in ordered media: A computational study of (<i>R</i> > _a)â€1,3â€dimethylallene, (2 <i>R</i>)â€2â€methyloxirane, and (2 <i>R</i>)â€Nâ€methyloxaziridine. International Journal of Quantum Chemistry, 2015, 115, 900-906.	2.0	3
27	Chiral discrimination in NMR spectroscopy: computation of the relevant molecular pseudoscalars. Molecular Physics, 2015, 113, 1780-1785.	1.7	18
28	Six questions on topology in theoretical chemistry. Computational and Theoretical Chemistry, 2015, 1053, 2-16.	2.5	99
29	Theoretical estimates of the anapole magnetizabilities of C4H4X2 cyclic molecules for X=O, S, Se, and Te. Journal of Chemical Physics, 2014, 141, 094305.	3.0	15
30	Invariance of molecular response properties under a coordinate translation. International Journal of Quantum Chemistry, 2014, 114, 1364-1392.	2.0	15
31	On the determination of the diagonal components of the optical activity tensor in chiral molecules. Journal of Chemical Physics, 2014, 140, 074105.	3.0	19
32	Delocalized Currents without a Ring of Bonded Atoms: Strong Delocalized Electron Currents Induced by Magnetic Fields in Noncyclic Molecules. Journal of Physical Chemistry A, 2014, 118, 3367-3375.	2.5	14
33	Magnetizabilities of Diatomic and Linear Triatomic Molecules in a Time-Independent Nonuniform Magnetic Field. Journal of Physical Chemistry A, 2014, 118, 6333-6342.	2.5	19
34	Polygonal Current Model: An Effective Quantifier of Aromaticity on the Magnetic Criterion. Journal of Physical Chemistry A, 2013, 117, 9083-9092.	2.5	39
35	Chiral discrimination via nuclear magnetic resonance spectroscopy. Rendiconti Lincei, 2013, 24, 283-289.	2.2	13
36	On the origin independence of the Verdet tensor ^{â€} . Molecular Physics, 2013, 111, 1405-1413.	1.7	5

#	Article	IF	CITATIONS
37	Parity violation energies of C ₄ H ₄ X ₂ molecules for X = O, S, Se, Te and Po ^{â€} . Molecular Physics, 2013, 111, 2387-2391.	1.7	12
38	Gauge invariance of the nuclear spin/electron orbit interaction and NMR spectral parameters. Journal of Chemical Physics, 2012, 137, 074108.	3.0	14
39	Beyond NICS. AIP Conference Proceedings, 2012, , .	0.4	11
40	On the Chan-Das gauge for the calculation of molecular magnetizabilities. Journal of Chemical Physics, 2012, 137, 154105.	3.0	1
41	On the existence of a natural common gauge-origin for the calculation of magnetic properties of atoms and molecules via gaugeless basis sets. Journal of Chemical Physics, 2012, 136, 164110.	3.0	18
42	Methods of continuous translation of the origin of the current density revisited. Theoretical Chemistry Accounts, 2012, 131, 1.	1.4	23
43	Nuclear magnetic resonance J coupling constant polarizabilities of hydrogen peroxide: A basis set and correlation study. Journal of Computational Chemistry, 2012, 33, 1845-1853.	3.3	13
44	Correlation between the out-of-Plane Components of Magnetizability and Central Magnetic Shielding in Unsaturated Cyclic Molecules. Journal of Physical Chemistry A, 2011, 115, 4553-4557.	2.5	38
45	Beyond NICS: estimation of the magnetotropicity of inorganic unsaturated planar rings. Physical Chemistry Chemical Physics, 2011, 13, 20666.	2.8	58
46	Electric field effects on nuclear spin–spin coupling tensors and chiral discrimination via NMR spectroscopy. Theoretical Chemistry Accounts, 2011, 129, 359-366.	1.4	18
47	Magnetic-field induced electronic anapoles in small molecules. Rendiconti Lincei, 2011, 22, 105-112.	2.2	24
48	Stagnation graphs and topological models of magneticâ€field induced electron current density for some small molecules in connection with their magnetic symmetry. International Journal of Quantum Chemistry, 2011, 111, 356-367.	2.0	22
49	Geometry distortion of the benzene molecule in a strong magnetic field. International Journal of Quantum Chemistry, 2011, 111, 772-779.	2.0	5
50	The ring current model of the pentaprismane molecule. Journal of Computational Chemistry, 2011, 32, 1599-1611.	3.3	11
51	Magnetic Field-Induced Alignment of Molecular Rotor-Shaped Cyclophanes. Journal of Physical Chemistry Letters, 2010, 1, 1463-1467.	4.6	3
52	Relative Weights of if and if Ring Currents in a Few Simple Monocycles. Journal of Chemical Theory and Computation, 2010, 6, 3343-3351.	5. 3	82
53	Ring Current Model and Anisotropic Magnetic Response of Cyclopropane. Journal of Chemical Theory and Computation, 2010, 6, 2002-2018.	5.3	62
54	On the Aromatic Character of 1,2-Dihydro-1,2-azaborine According to Magnetic Criteria. Journal of Physical Chemistry Letters, 2010, 1, 1563-1568.	4.6	51

#	Article	IF	Citations
55	Assessment of the CTOCD-DZ method in a hierarchy of coupled cluster methods. Physical Chemistry Chemical Physics, 2010, 12, 6163.	2.8	8
56	Understanding the ring current effects on magnetic shielding of hydrogen and carbon nuclei in naphthalene and anthracene. Journal of Computational Chemistry, 2009, 30, 551-564.	3.3	32
57	Ring current models for acetylene and ethylene molecules. Chemical Physics, 2009, 356, 153-163.	1.9	26
58	Topological models of magnetic field induced current density field in small molecules. Theoretical Chemistry Accounts, 2009, 123, 353-364.	1.4	29
59	Calculation of Hypershielding Contribution to Isotropic Nitrogen Shielding in Strong Magnetic Fields. Journal of Chemical Theory and Computation, 2009, 5, 1343-1349.	5.3	8
60	Can Induced Orbital Paramagnetism Be Controlled by Strong Magnetic Fields?. Journal of Chemical Theory and Computation, 2009, 5, 3049-3059.	5.3	5
61	Aromaticity of \hat{l} ±-Oligothiophenes and Equivalent Oligothienoacenes. Journal of Chemical Theory and Computation, 2009, 5, 1767-1775.	5.3	6
62	Induced Orbital Paramagnetism and Paratropism in Closed-Shell Molecules. Journal of Physical Chemistry A, 2009, 113, 14465-14479.	2.5	20
63	Response tensors for chiral discrimination in NMR spectroscopy. Theoretical Chemistry Accounts, 2008, 119, 99-106.	1.4	22
64	Electronic Structure of the Ground and Excited States of β arboline. ChemPhysChem, 2008, 9, 896-901.	2.1	2
65	Relation between ï€-Electron Localization/Delocalization and H-Bond Strength in Derivatives of <i>>o</i> -Hydroxy-Schiff Bases. Journal of Organic Chemistry, 2008, 73, 2138-2145.	3.2	44
66	Spatial Ring Current Model for the Prismane Molecule. Journal of Physical Chemistry A, 2008, 112, 5175-5186.	2.5	14
67	Rototranslational sum rules for electromagnetic hypershielding at the nuclei and related atomic Cartesian derivatives of the optical rotatory power. Journal of Chemical Physics, 2008, 128, 244107.	3.0	2
68	Topology of magnetic-field induced electron current density in the cubane molecule. Journal of Chemical Physics, 2008, 128, 194305.	3.0	21
69	Calculation of the electric hypershielding at the nuclei of molecules in a strong magnetic field. Journal of Chemical Physics, 2007, 126, 154103.	3.0	10
70	General Connections Among Nuclear Electromagnetic Shieldings and Polarizabilities. Advances in Chemical Physics, 2007, , 507-549.	0.3	65
71	Assessment of Ïf-Diatropicity of the Cyclopropane Molecule. Journal of Physical Chemistry A, 2007, 111, 8163-8169.	2.5	67
72	Spatial Ring Current Model of the [2.2]Paracyclophane Molecule. Journal of Physical Chemistry A, 2007, 111, 3110-3123.	2.5	25

#	Article	IF	CITATIONS
73	Nuclear Magnetoelectric Shieldings for Chiral Discrimination in NMR Spectroscopy. Theoretical Study of (<i>RRRN</i> -Methyloxizane, and (2 <i>R</i>)-(1>)-(1>)-(1>)-(1>)-(1>)-(1>)-(1>)-(1	5. 3	14
74	Chiral discrimination via nuclear magnetic shielding polarisabilities from NMR spectroscopy: Theoretical study of (Ra)-1,3-dimethylallene, (2R)-2-methyloxirane, and (2R)-N-methyloxaziridine. Journal of Computational Chemistry, 2007, 28, 2159-2163.	3.3	22
75	Parity violation energy of 5-pyrimidyl alkanol, a chiral autocatalytic molecule. Chemical Physics Letters, 2007, 435, 346-349.	2.6	11
76	Magnetotropicity of five-membered heterocyclic molecules. Theoretical Chemistry Accounts, 2007, 117, 903-913.	1.4	16
77	Magnetotropicity of phosphole and its arsenic analogue. Theoretical Chemistry Accounts, 2007, 118, 89-97.	1.4	16
78	Invariance of multipole polarisabilities of nuclear magnetic shielding within the approach of continuous transformation of the origin of the current density. Theoretical Chemistry Accounts, 2007, 118, 863-868.	1.4	3
79	Invariance of magnetic-field induced current density to a continuous transformation of the origin of the coordinate system. Chemical Physics Letters, 2006, 421, 21-26.	2.6	19
80	Parity violation energy of biomolecules – III: RNA. Chemical Physics Letters, 2006, 432, 263-268.	2.6	10
81	Forces on the Nuclei of a Molecule in Optical Fields. Theoretical Chemistry Accounts, 2006, 116, 420-426.	1.4	6
82	Structure, magnetizability, and nuclear magnetic shielding tensors of bis-heteropentalenes. IV. Dihydrophospholophosphole isomers. Journal of Computational Chemistry, 2006, 27, 344-351.	3.3	8
83	Diatropicity of tetraazanaphthalenes. Journal of Computational Chemistry, 2006, 27, 1980-1989.	3.3	9
84	From Pentalene to Dicyclopenta[b,g]naphthalene, or the Change towards Delocalized Structures. ChemPhysChem, 2006, 7, 240-244.	2.1	19
85	Critique of the Multipath Model for 1J(C,C) Nuclear Spin-Spin Coupling via Electron Current Induced by 13C Nuclear Magnetic Dipoles. ChemPhysChem, 2006, 7, 679-684.	2.1	16
86	Calculation of the fourth-rank nuclear magnetic hypershielding of some small molecules. Physical Review A, 2006, 74, .	2.5	11
87	Topology of magnetic-field-induced current-density field in diatropic monocyclic molecules. Physical Review A, 2006, 74, .	2.5	59
88	Rototranslational sum rules for static and dynamic polarisabilities. Computer Physics Communications, 2005, 173, 131-139.	7.5	1
89	Ring-current signatures in shielding-density maps. Chemical Physics Letters, 2005, 401, 164-169.	2.6	58
90	The ring-current model of the paratropic pentalene molecule. Chemical Physics Letters, 2005, 401, 282-287.	2.6	16

#	Article	IF	Citations
91	Parity violation energy of biomolecules – II: DNA. Chemical Physics Letters, 2005, 407, 522-526.	2.6	19
92	Sum rules for invariance of the fourth-rank hypermagnetisability in a gauge translation. Chemical Physics Letters, 2005, 408, 403-408.	2.6	9
93	Interpretation of vicinal spin–spin coupling constants in ethane via the current-density induced by nuclear magnetic dipoles. Chemical Physics Letters, 2005, 409, 177-186.	2.6	18
94	Ring current effects on nuclear magnetic shielding of carbon in the benzene molecule. Magnetic Resonance in Chemistry, 2005, 43, 316-320.	1.9	30
95	Fourth-rank hypermagnetizability of medium-size planar conjugated molecules and fullerene. Physical Review A, 2005, 72, .	2.5	12
96	Nonlinear response of the benzene molecule to strong magnetic fields. Journal of Chemical Physics, 2005, 122, 074318.	3.0	12
97	Current density maps, magnetizability, and nuclear magnetic shielding tensors of bis-heteropentalenes. III. Thieno-thiophene isomers. Molecular Physics, 2005, 103, 789-801.	1.7	10
98	Why Downfield Proton Chemical Shifts Are Not Reliable Aromaticity Indicators. Organic Letters, 2005, 7, 3457-3460.	4.6	78
99	Can aromaticity be connected with molecular polarizability? A theoretical study of benzene isomers and five-membered heterocyclic molecules. Journal of Computational Methods in Sciences and Engineering, 2004, 4, 665-676.	0.2	0
100	Current density maps, magnetizability, and nuclear magnetic shielding tensors of bis-heteropentalenes. II. Furo-furan Isomers. Journal of Chemical Physics, 2004, 120, 6542-6550.	3.0	12
101	Calculation of electric dipole hypershieldings at the nuclei in the Hellmann–Feynman approximation. Journal of Chemical Physics, 2004, 120, 3142-3151.	3.0	11
102	Electric Field Gradient Effects on Magnetic Susceptibility. Advances in Quantum Chemistry, 2004, 47, 177-191.	0.8	3
103	Molecular response to a time-independent non-uniform magnetic-field. Chemical Physics, 2004, 304, 289-299.	1.9	33
104	The vibrational spectrum of camphor from ab initio and density functional theory and parity violation in the C–C*–CO bending mode. Chemical Physics Letters, 2004, 383, 496-501.	2.6	18
105	Understanding proton magnetic shielding in the benzene molecule. Chemical Physics Letters, 2004, 390, 268-271.	2.6	38
106	Effects of strong magnetic fields on the electron distribution and magnetisability of rare gas atoms. Chemical Physics Letters, 2004, 400, 133-138.	2.6	13
107	Localisation and reversal of paratropic ring currents in molecules with formal anti-aromatic electron counts. Physical Chemistry Chemical Physics, 2004, 6, 289-294.	2.8	35
108	Calculation of the fourth-rank molecular hypermagnetizability of some small molecules. Journal of Chemical Physics, 2004, 120, 9556-9560.	3.0	19

#	Article	lF	Citations
109	Are Ring Currents Still Useful to Rationalize the Benzene Proton Magnetic Shielding?. Organic Letters, 2004, 6, 2265-2267.	4.6	87
110	Assessment of aromaticity via molecular response properties. Physical Chemistry Chemical Physics, 2004, 6, 217-223.	2.8	415
111	Ring-Current Models from the Differential Biot-Savart Law. Organic Letters, 2004, 6, 4451-4454.	4.6	54
112	Calculation of Dipole-Shielding Polarizabilities (σαβĴ³I):  The Influence of Uniform Electric Field Effects on the Shielding of Backbone Nuclei in Proteins. Journal of the American Chemical Society, 2003, 125, 9556-9557.	13.7	16
113	Magnetic response of dithiin molecules: is there anti-aromaticity in nature?. Chemical Physics Letters, 2003, 375, 583-590.	2.6	27
114	Electric field gradient effects on nuclear magnetic shieldings. Computational and Theoretical Chemistry, 2003, 633, 105-111.	1.5	7
115	Sum rules related to third-order properties: a numerical check. Chemical Physics, 2003, 288, 281-289.	1.9	8
116	Correlated and gauge invariant calculations of nuclear magnetic shielding constants using the continuous transformation of the origin of the current density approach. Journal of Chemical Physics, 2003, 118, 6830-6845.	3.0	46
117	Nuclear spin-spin coupling density in molecules. Journal of Chemical Physics, 2003, 118, 7165.	3.0	43
118	Parity-violating contributions to nuclear magnetic shielding. Physical Review A, 2003, 68, .	2.5	47
119	Theoretical determination of the magnetic properties of 2-pyrone and 4-pyrone, ando-benzoquinone andp-benzoquinone. Molecular Physics, 2003, 101, 2497-2509.	1.7	5
120	Current density maps, magnetizability, and nuclear magnetic shielding tensors of bis-heteropentalenes. I. Di-hydro-pyrrolo–pyrrole isomers. Journal of Chemical Physics, 2003, 119, 5518-5526.	3.0	18
121	Nuclear spin–spin coupling density functions and the Fermi hole. Journal of Chemical Physics, 2003, 119, 1343-1349.	3.0	44
122	Calculation of third-rank molecular hypermagnetizabilities by continuous transformation of the origin of the current density. Journal of Chemical Physics, 2002, 116, 9611-9615.	3.0	4
123	Ring Currents and Magnetic Properties of s-Indacene, an Archetypal Paratropic, Non-Antiaromatic Molecule. Journal of Physical Chemistry A, 2002, 106, 11806-11814.	2.5	38
124	The Leap-Frog Effect of Ring Currents in Benzene. Journal of the American Chemical Society, 2002, 124, 2008-2014.	13.7	37
125	Theoretical determination of magnetic properties of planar benzene isomers. Journal of Chemical Physics, 2002, 116, 964-973.	3.0	14
126	On the resolution of the optical rotatory power of chiral molecules into atomic terms. A study of hydrogen peroxide. Journal of Chemical Physics, 2002, 116, 6427-6434.	3.0	22

#	Article	IF	CITATIONS
127	Calculation of electric dipole hypershieldings at the nuclei in diatomic molecules. Chemical Physics, 2002, 284, 601-606.	1.9	6
128	Nuclear electromagnetic shieldings via charge and current density functions. International Journal of Quantum Chemistry, 2002, 90, 464-471.	2.0	1
129	An efficient coupled Hartree–Fock computational scheme for parity-violating energy differences in enantiomeric molecules. Computer Physics Communications, 2002, 144, 130-140.	7. 5	2
130	Understanding parity violation in molecular systems. Physical Review E, 2001, 65, 011904.	2.1	35
131	Resolution of molecular polarizabilities of CH3–X and CH3–CH2–X derivatives into atomic terms. Journal of Chemical Physics, 2001, 114, 4053-4057.	3.0	12
132	Some mathematical properties of gauge transformations with respect to the Coulomb gauge: Variational analysis of an energy functional. International Journal of Quantum Chemistry, 2000, 77, 599-606.	2.0	2
133	Thomas–Reiche–Khun populations in X–CH3 and X–C2H5 series of molecules. Chemical Physics, 2000, 259, 1-9.	1.9	6
134	Ring currents. Progress in Nuclear Magnetic Resonance Spectroscopy, 2000, 36, 1-88.	7.5	437
135	Parity-violating effects in asymmetric chemical reactions:â€, A theoretical study on the CHFClBr molecule. Physical Review E, 2000, 62, 8395-8399.	2.1	19
136	Shielding polarizabilities via continuous transformation of the origin of the current density in the set of small molecules: H2O2, F2, H2C2, H2CO, NH3, HCN, and HNC. Journal of Chemical Physics, 2000, 112, 6141-6151.	3.0	12
137	Energetic stabilization ofd-camphor via weak neutral currents. Physical Review E, 1999, 60, 871-874.	2.1	18
138	Thomas–Reiche–Kuhn populations in alkanes. Chemical Physics, 1999, 246, 75-85.	1.9	7
139	Current Density Maps, Magnetizability, and Nuclear Magnetic Shielding Tensors for Anthracene, Phenanthrene, and Triphenylene. Journal of the American Chemical Society, 1999, 121, 5513-5518.	13.7	78
140	Theoretical results which strengthen the hypothesis of electroweak bioenantioselection. Physical Review E, 1999, 59, 3382-3385.	2.1	45
141	On the stabilization of natural L-enantiomers of α-amino acids via parity-violating effects. Chemical Physics Letters, 1998, 286, 240-242.	2.6	49
142	Calculation of magnetic properties of HF, H2O, NH3, and CH4 molecules using a longitudinal gauge for the vector potential. International Journal of Quantum Chemistry, 1998, 66, 31-45.	2.0	2
143	Resolution of alkane molecular polarizabilities into atomic terms. Journal of Chemical Physics, 1998, 109, 2987-2993.	3.0	19
144	Forces at the nuclei of a molecule in the presence of non-uniform electric field. Computational and Theoretical Chemistry, 1997, 390, 57-60.	1.5	1

#	Article	IF	Citations
145	Dependence of geminal1Hâ^'1H and31Pâ^'1H spin-spin coupling constants on the specific intramolecular Câ^'HX interaction. Russian Chemical Bulletin, 1997, 46, 292-296.	1.5	4
146	Magnetic properties of C60 calculated by continuous transformation of the origin of the current density. Chemical Physics Letters, 1997, 278, 251-255.	2.6	24
147	On the calculation of parity-violating energies in hydrogen peroxide and hydrogen disulphide molecules within the random-phase approximation. Chemical Physics Letters, 1997, 279, 349-354.	2.6	87
148	Ring current model of the naphthalene molecule. Molecular Physics, 1997, 92, 609-617.	1.7	28
149	Molecular magnetic properties via formal annihilation of paramagnetic contribution to electronic current density. International Journal of Quantum Chemistry, 1996, 60, 249-259.	2.0	42
150	Effects of a static electric field on molecular magnetic properties: an approach using continuous transformation of origin of current density. Molecular Physics, 1996, 89, 157-170.	1.7	23
151	Theoretical study of magnetic properties of ammonia molecule in nonuniform magnetic field. Theoretica Chimica Acta, 1996, 94, 155.	0.8	2
152	Longitudinal vector potentials for molecular magnetic properties. Computational and Theoretical Chemistry, 1995, 336, 1-5.	1.5	6
153	Molecular magnetic properties within continuous transformations of origin of the current density. Journal of Chemical Physics, 1995, 102, 7150-7157.	3.0	136
154	Coupled Hartree–Fock calculations of originâ€independent magnetic properties of benzene molecule. Journal of Chemical Physics, 1995, 102, 9619-9625.	3.0	55
155	Conditions for invariance of molecular magnetic properties in Landau gauge transformations. Journal of Chemical Physics, 1995, 103, 1852-1859.	3.0	9
156	Ab initio and experimental study of NMR coupling constants in bicyclo[1.1.1]pentane. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 4031-4035.	1.7	25
157	Vicinal proton-proton coupling constants. Molecular Physics, 1994, 82, 913-928.	1.7	30
158	Theoretical study of the magnetic properties of a methane molecule in a nonuniform magnetic field. Physical Review A, 1994, 49, 3445-3449.	2.5	16
159	On CHF calculations of second-order magnetic properties using the method of continuous transformation of origin of the current density. Theoretica Chimica Acta, 1994, 89, 181-192.	0.8	206
160	Computational approach to molecular magnetic properties by continuous transformation of the origin of the current density. Chemical Physics Letters, 1994, 220, 299-304.	2.6	288
161	Random phase approximation calculations of K-edge rotational strengths of chiral molecules: propylene oxide. Chemical Physics Letters, 1994, 223, 402-410.	2.6	25
162	Theoretical study of the magnetic properties of water molecules in non-uniform magnetic fields. Computational and Theoretical Chemistry, 1994, 305, 89-99.	1.5	15

#	Article	IF	Citations
163	Electronic current density induced by nuclear magnetic dipoles. Computational and Theoretical Chemistry, 1994, 313, 299-304.	1.5	19
164	IGLO Study of Benzene and Some of Its Isomers and Related Molecules. Search for Evidence of the Ring Current Model. Journal of the American Chemical Society, 1994, 116, 5298-5306.	13.7	252
165	Vicinal proton—proton coupling constants. Basis set dependence in SCF ab initio calculations. Chemical Physics Letters, 1993, 206, 253-259.	2.6	18
166	Magnetic properties of a molecule in non-uniform magnetic field. Theoretica Chimica Acta, 1993, 87, 59-73.	0.8	35
167	Theoretical determination of electric polarizability and hyperpolarizabilities of pyridine N-oxide and 4-nitropyridine N-oxide. Computational and Theoretical Chemistry, 1993, 288, 255-259.	1.5	5
168	Calculation of molecular magnetic properties in the isoelectronic series PH2â^', PH3 and PH4+. Computational and Theoretical Chemistry, 1993, 287, 77-88.	1.5	2
169	Calculation of molecular magnetic properties within the Landau gauge in hydrogen fluoride, ammonia, and methane molecules. Journal of Chemical Physics, 1993, 98, 4030-4040.	3.0	23
170	Calculation of dynamic electric dipole polarizability, nuclear electric shieldings, and their Cauchy moments in benzene. Journal of Chemical Physics, 1993, 99, 6027-6030.	3.0	8
171	Use of Symmetry in Coupled Hartree-Fock Calculations of Non-linear Response Tensors in Molecules. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1993, 48, 141-144.	1.5	6
172	Calculation of molecular magnetic properties within the Landau gauge. Physical Review A, 1992, 45, 6272-6281.	2.5	20
173	Dipole moments and polarizabilities of some substituted pyridine-1-oxides for optoelectronics. Computational and Theoretical Chemistry, 1992, 254, 205-218.	1.5	19
174	Coupled Hartree-Fock calculations of the electric dipole polarizability and first hyperpolarizability of some "inorganic benzenes― Computational and Theoretical Chemistry, 1991, 236, 403-410.	1.5	36
175	Coupled Hartree-Fock calculations of magnetic properties of the benzene molecule: estimate of the hartree-fock limit for magnetic susceptibilities and. Computational and Theoretical Chemistry, 1991, 234, 127-145.	1.5	54
176	Magnetic properties of C60 and C70. Chemical Physics Letters, 1991, 179, 174-180.	2.6	71
177	Theoretical determination of paramagnetic susceptibilities from nuclear electromagnetic shieldings. Chemical Physics, 1991, 150, 173-185.	1.9	32
178	Electromagnetic moments and fields induced by nuclear vibrational motion in molecules. Chemical Physics Letters, 1991, 179, 297-302.	2.6	5
179	Structure and properties of C70. Chemical Physics Letters, 1991, 184, 182-186.	2.6	133
180	Virial sum rules for nuclear electric shieldings and geometrical derivatives of dipole and quadrupole molecular moments. Journal of Chemical Physics, 1991, 94, 448-453.	3.0	8

#	Article	IF	Citations
181	Coupled Hartree-Fock calculations of atomic polar tensors and the dipole polarisability of the benzene molecule. Chemical Physics Letters, 1990, 167, 101-104.	2.6	21
182	Electric and magnetic properties of the aromatic sixty-carbon cage. Chemical Physics Letters, 1990, 165, 79-86.	2.6	180
183	Nuclear shielding tensors, atomic polar and axial tensors, and vibrational dipole and rotational strengths of NHDT. Journal of Chemical Physics, 1989, 90, 3204-3213.	3.0	21
184	Anisotropic dispersion forces in methane mixtures. Molecular Physics, 1989, 68, 853-865.	1.7	30
185	The theory of sternheimer shielding in molecules in external fields. Chemical Physics, 1989, 133, 221-235.	1.9	32
186	Rototranslational sum rules for geometrical derivatives of expectation values. Chemical Physics Letters, 1989, 160, 49-54.	2.6	7
187	Calculation of paramagnetic susceptibilities using electronic atomic axial tensors (or nuclear) Tj ETQq1 1 0.78431 509-519.	14 rgBT /O 2.6	Overlock 10 T 24
188	Electromagnetic moments and fields induced by nuclear spin, vibrational electric and magnetic field at the nuclei, and nuclear electromagnetic couplings in molecules. Chemical Physics, 1989, 134, 269-278.	1.9	18
189	Carbon-proton and proton-proton spin-spin coupling surfaces for the methane molecule. Molecular Physics, 1989, 66, 831-846.	1.7	12
190	The nuclear electromagnetic shielding approach to IR and VCD intensities: A theoretical study of ethylene oxide and cyclopropane. Chemical Physics Letters, 1988, 150, 515-521.	2.6	16
191	Calculation of NMR parameters for bridging oxygens in H3T?O?T?H3 linkages (T, T?=Al, Si, P), for oxygen in SiH3O?, SiH3OH and SiH3OMg+ and for bridging fluorine in H3SiFSiH 3 +. Physics and Chemistry of Minerals, 1988, 15, 564-569.	0.8	60
192	NMR chemical shifts of CX and XCY molecules (X , Y = O , S , Se , Te): A comparison of coupled Hartree-Fock, semi-empirical rex and experimental results. Chemical Physics, 1988, 123, 339-350.	1.9	32
193	Ab initio study of a 32-boron cluster: B32H322 Inorganic Chemistry, 1988, 27, 1298-1300.	4.0	8
194	Ab initio calculation of B and O nuclear quadrupole coupling constants and NMR shielding constants in molecular models for B2O3 glass. Journal of Non-Crystalline Solids, 1988, 99, 267-275.	3.1	13
195	The effects of rotation and vibration on the carbon-13 shielding, magnetizabilities and geometrical parameters of some methane isotopomers. Molecular Physics, 1988, 64, 143-162.	1.7	59
196	Two methods of computing molecular dipole and quadrupole derivatives. Journal of Chemical Physics, 1988, 88, 272-276.	3.0	10
197	Ab initiocalculation of the refractive indices and related properties of CaCO3. Physical Review B, 1988, 38, 5694-5698.	3.2	8
198	Electromagnetic nuclear shielding tensors and their relation to other secondâ€order properties: A study of the ammonia molecule. Journal of Chemical Physics, 1988, 89, 987-997.	3.0	21

#	Article	IF	Citations
199	Abinitiocoupled Hartree–Fock calculation of the19F and33S NMR parameters of SF4. Journal of Chemical Physics, 1988, 88, 7251-7252.	3.0	8
200	Vibration-rotation effects on the polarizabilities of CH4and CD4calculated from anab initiopolarizability surface. Molecular Physics, 1988, 64, 1061-1071.	1.7	28
201	Calculations of the force field of the methane molecule. Molecular Physics, 1987, 60, 509-525.	1.7	56
202	Magnetizability and carbon-13 shielding surfaces for the methane molecule. Molecular Physics, 1987, 62, 605-616.	1.7	35
203	Coupled Hartree–Fock calculations of 31P NMR shieldings in phosphorous fluorides and PO3â^4. Journal of Chemical Physics, 1987, 86, 4066-4069.	3.0	16
204	Electromagnetic nuclear shielding tensors and their relation to other secondâ€order properties. A study of the methane molecule. Journal of Chemical Physics, 1987, 87, 472-480.	3.0	45
205	Theory of the carbon-13 proton spin-spin coupling and the proton shielding surfaces of the methane molecule. Molecular Physics, 1987, 61, 1415-1421.	1.7	12
206	On the CH bond dipole moment in alkanes. Journal of Chemical Physics, 1987, 87, 1681-1684.	3.0	21
207	Ab initio calculation of the 31P NMR shielding tensor for the series POaFbâ^'(2a+bâ^'5), a+b=4 and for HPO42â^'. Chemical Physics Letters, 1987, 140, 37-40.	2.6	15
208	Momentum theorems for electrons in the presence of monochromatic radiation and intramolecular perturbations. Chemical Physics Letters, 1987, 138, 465-470.	2.6	6
209	Analytic geometrical derivatives of second-order molecular properties from perturbation theory. Chemical Physics Letters, 1987, 135, 571-575.	2.6	5
210	Ab initio calculations of oxygen nuclear quadrupole coupling constants and oxygen and silicon NMR shielding constants in molecules containing Siî—,O bonds. Chemical Physics, 1987, 112, 205-212.	1.9	33
211	Theory of the proton-proton spin-spin coupling surface of the methane molecule. Chemical Physics Letters, 1986, 132, 173-180.	2.6	10
212	Ab initio coupled Hartree-Fock calculation of the 29Si NMR shielding constants in SiH4, Si2H6, Si2H4 and H2SiO. Chemical Physics Letters, 1986, 128, 420-424.	2.6	15
213	On the "sagging pattern―of29 Si NMR shieldings in the series SiHaFb, a+b = 4. Chemical Physics Letters, 1986, 132, 464-466.	2.6	18
214	Analytic dipole moment geometric derivatives from nuclear electric shielding in molecules. II. Application to twoâ€heavy atom molecules. Journal of Chemical Physics, 1986, 85, 5932-5935.	3.0	25
215	Electric and magnetic nuclear shielding tensors: A study of the water molecule. Physical Review A, 1986, 33, 3727-3741.	2.5	61
216	Analytic dipole moment geometric derivatives from nuclear electric shielding in molecules. Journal of Chemical Physics, 1986, 84, 3916-3920.	3.0	39

#	Article	IF	Citations
217	Theory of magnetic susceptibility in terms of atomic quantities. Journal of Chemical Physics, 1986, 85, 5924-5931.	3.0	15
218	Ab initio calculations of 29Si NMR chemical shifts for some gas phase and solid state silicon fluorides and oxides. Journal of Chemical Physics, 1986, 84, 369-374.	3.0	55
219	Resolution of molecular magnetic susceptibility into atomic terms. Chemical Physics Letters, 1985, 114, 79-81.	2.6	7
220	The gradient of a molecular wavefunction and its relation to the nuclear electric shielding. Chemical Physics Letters, 1985, 118, 217-220.	2.6	16
221	Quantum mechanical approach to IR intensities via nuclear electric shielding tensors. I. Water. Journal of Chemical Physics, 1985, 83, 1218-1222.	3.0	37
222	Quantum-mechanical sum rules and gauge invariance: A study of the HF molecule. Physical Review A, 1985, 32, 2607-2614.	2.5	67
223	Nuclear electric shielding and its connections with other second-order properties. Computational and Theoretical Chemistry, 1985, 120, 265-275.	1.5	0
224	Firstâ€order polarization propagator approach to nuclear spin–spin coupling tensors in SiH4 and AlHâ^'4. Journal of Chemical Physics, 1984, 80, 315-318.	3.0	9
225	Connection between the nuclear electric shielding tensor and the infrared intensity. Chemical Physics Letters, 1984, 112, 103-105.	2.6	54
226	Resolution of molecular polarizability into atomic terms. Chemical Physics Letters, 1984, 109, 89-91.	2.6	17
227	Singularities of magnetic-field induced electron current density: A study of the ethylene molecule. International Journal of Quantum Chemistry, 1984, 25, 929-940.	2.0	19
228	Magnetic properties and induced current density in acetylene. International Journal of Quantum Chemistry, 1984, 25, 1123-1134.	2.0	18
229	The validity of Musher's model for the magnetic properties of aromatic molecules. Chemical Physics Letters, 1983, 100, 67-69.	2.6	18
230	Frequency-dependence of the nuclear electric shielding in the HF molecule via equation-of-motion-approaches. Computational and Theoretical Chemistry, 1983, 93, 207-212.	1.5	1
231	Nuclear magnetic shielding in cyclopropane and cyclopropenyl cation. Journal of the American Chemical Society, 1983, 105, 12-15.	13.7	27
232	Polarization propagator approach to the dynamic nuclear electric shielding in LiH molecule. Journal of Chemical Physics, 1983, 79, 889-893.	3.0	24
233	Equation-of-motion approach to frequency-dependent nuclear electric shielding tensors in the HF molecule. Physical Review A, 1983, 27, 1301-1309.	2.5	38
234	Coupled Hartree–Fock study of nuclear electric shielding in SF6 molecule. Journal of Chemical Physics, 1983, 79, 4085-4086.	3.0	10

#	Article	IF	Citations
235	Calculation of the diamagnetic spinâ€orbit contribution to the nuclear spin–spin coupling tensors in the water molecule. Journal of Chemical Physics, 1983, 79, 1554-1556.	3.0	16
236	Theoretical determination of the nuclear spin–spin coupling tensors in NHâ^2, NH+4, BHâ^4molecular ions. Journal of Chemical Physics, 1982, 77, 2023-2027.	3.0	10
237	Theoretical studies on the benzene molecule. II. Criticism of the ring current model. Journal of Chemical Physics, 1982, 77, 3129-3139.	3.0	50
238	Anisotropy of the nuclear spin coupling in PHâ^2, PH3, and PH+4molecules. Journal of Chemical Physics, 1982, 77, 408-414.	3.0	20
239	Anisotropy of the nuclear spin–spin coupling tensor in water, ammonia, and methane molecules. Journal of Chemical Physics, 1982, 77, 2448-2453.	3.0	46
240	Paramagnetic vortices and proton magnetic shielding in aromatic molecules. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1982, 1, 70-80.	0.4	13
241	Theoretical studies of the benzene molecule: Magnetic susceptibility and nuclear shielding constants. Journal of Chemical Physics, 1981, 75, 5019-5027.	3.0	62
242	Inconsistency of the ring-current model for the cyclopropenyl cation. Chemical Physics Letters, 1981, 80, 533-536.	2.6	48
243	Theory of nuclear electric shielding in molecules. Physical Review A, 1981, 24, 1696-1704.	2.5	33
244	On the theoretical determination of molecular first hyperpolarizability. Journal of Chemical Physics, 1981, 74, 5216-5224.	3.0	75
245	A proof of pitzer's theorem for abelian groups and its application to two-electron integral transformation. Chemical Physics Letters, 1980, 75, 392-394.	2.6	12
246	Calculations of nuclear electric shielding in molecules. Chemical Physics Letters, 1980, 71, 529-533.	2.6	24
247	Theoretical determination of the magnetic properties of HCl, H2S, PH3, and SiH4 molecules. Journal of Chemical Physics, 1980, 72, 6768-6776.	3.0	106
248	Calculation of nuclear spin–spin coupling constants in methanol molecule. Journal of Chemical Physics, 1979, 71, 2514-2521.	3.0	53
249	Geometric approximation to nuclear spin-spin coupling constants in the water molecule. International Journal of Quantum Chemistry, 1979, 15, 181-196.	2.0	30
250	On the use of symmetry in first-order perturbedHF theory. II. International Journal of Quantum Chemistry, 1979, 15, 645-653.	2.0	16
251	The fast CI method for second-order properties. Chemical Physics Letters, 1979, 68, 162-165.	2.6	9
252	On the use of symmetry in first-order perturbed Hartree-Fock theory. International Journal of Quantum Chemistry, 1978, 13, 375-390.	2.0	9

#	Article	IF	CITATIONS
253	Paramagnetic contributions to the NMR shielding constants of 1H and 17O in water by triple perturbation theory. Chemical Physics Letters, 1978, 59, 261-264.	2.6	2
254	Calculations of proton magnetic shielding constants in polyatomic molecules. Journal of Chemical Physics, 1978, 68, 832-839.	3.0	37
255	Perturbed Hartree–Fock calculations: Electric and magnetic properties of water in static fields. Journal of Chemical Physics, 1978, 68, 1523-1530.	3.0	55
256	Calculations of magnetic susceptibility of polyatomic molecules. Journal of Chemical Physics, 1977, 67, 382-388.	3.0	46
257	Calculations of the magnetic shielding constants of heavy nuclei in polyatomic molecules. International Journal of Quantum Chemistry, 1977, 12, 93-103.	2.0	36
258	Coupled Hartree-Fock calculations of nuclear magnetic resonance carbon-carbon coupling constants in substituted benzenes. Journal of the American Chemical Society, 1976, 98, 7989-7993.	13.7	25
259	Calculations of electric dipole polarizabilities of polyatomic molecules. International Journal of Quantum Chemistry, 1976, 10, 771-780.	2.0	28
260	Variable temperature n.m.r. behaviour of 1,5-benzodiazepinones and 1,5-benzodiazepinthiones. Magnetic Resonance in Chemistry, 1976, 8, 387-388.	0.7	12
261	Calculations of electric dipole hyperpolarizability of polyatomic molecules. Chemical Physics Letters, 1976, 39, 323-327.	2.6	15
262	Calculations of vertical ionization potentials of CF4 and SiF4 by the green-function method. Chemical Physics Letters, 1976, 42, 411-414.	2.6	11
263	The 1H NMR spectra of quinoline, quinolineN-oxide, the quinolinium ion and of their monomethyl derivatives. Magnetic Resonance in Chemistry, 1975, 7, 451-454.	0.7	26
264	Structure and protonation study of the imidazo [1,2-a]-pyrimidine system in1H nuclear magnetic resonance. Magnetic Resonance in Chemistry, 1975, 7, 455-459.	0.7	3
265	Semi-empirical MO calculations of nuclear spin coupling constants. Magnetic Resonance in Chemistry, 1975, 7, 563-568.	0.7	11
266	Further comments on ring currents in five-membered heterocyclic molecules. Molecular Physics, 1974, 27, 1439-1440.	1.7	9
267	Uncoupled Hartree-Fock perturbation theory for the density matrix: the second-order properties of conjugated molecules. Molecular Physics, 1974, 28, 1389-1395.	1.7	18
268	Critical examination of the 1H NMR spectra of aryl epoxides. Magnetic Resonance in Chemistry, 1973, 5, 385-389.	0.7	14
269	Substituent effect on the 1H NMR Spectra oftrans aryl methyl oxiranes and arylpropenes. Magnetic Resonance in Chemistry, 1973, 5, 391-396.	0.7	11
270	Coupled and uncoupled Hartree-Fock calculations of ring currents and proton chemical shifts: the aromatic character of five-membered heterocycles. Molecular Physics, 1973, 26, 41-47.	1.7	29

#	Article	IF	CITATIONS
271	The intermolecular electrostatic and magnetic effects of the carbonyl group on the shielding constant of proton. Molecular Physics, 1973, 26, 311-316.	1.7	1
272	A PMR investigation of organic cations—ll: Mixedp-tolyl-thienyl carbonium ions. Magnetic Resonance in Chemistry, 1972, 4, 413-419.	0.7	3
273	Orbital hybridization and proton chemical shifts in substituted methanes. Tetrahedron Letters, 1972, 13, 1453-1456.	1.4	3
274	Uncoupled Hartree-Fock calculation of ring currents in substituted benzenes. Molecular Physics, 1971, 22, 941-943.	1.7	20
275	Charge density and NMR parameters. Aliphatic derivatives. Magnetic Resonance in Chemistry, 1971, 3, 113-125.	0.7	27
276	An interpretation of 1H and 13C chemical shifts in substituted benzenes on the basis of M.O. charge densities. Magnetic Resonance in Chemistry, 1971 , 3 , 283 - 291 .	0.7	46
277	Proton chemical shift-charge density correlations for positions in substituted benzenes Tetrahedron Letters, 1970, 11, 805-808.	1.4	4
278	Proton chemical shift-charge density correlations in substituted alkyl derivatives Tetrahedron Letters, 1969, 10, 3025-3028.	1.4	4
279	Fock similarity transformation of the electronic Hamiltonian. Journal of Chemical Physics, 0, , .	3.0	0