Sara Poletti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2200141/publications.pdf

Version: 2024-02-01

94433 88630 5,847 111 37 70 citations h-index g-index papers 111 111 111 7338 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cognitive remediation therapy for post-acute persistent cognitive deficits in COVID-19 survivors: A proof-of-concept study. Neuropsychological Rehabilitation, 2023, 33, 1207-1224.	1.6	8
2	<scp>ENIGMAâ€anxiety</scp> working group: Rationale for and organization of <scp>largeâ€scale</scp> neuroimaging studies of anxiety disorders. Human Brain Mapping, 2022, 43, 83-112.	3.6	31
3	What we learn about bipolar disorder from largeâ€scale neuroimaging: Findings and future directions from the <scp>ENIGMA</scp> Bipolar Disorder Working Group. Human Brain Mapping, 2022, 43, 56-82.	3.6	67
4	Longitudinal Structural Brain Changes in Bipolar Disorder: A Multicenter Neuroimaging Study of 1232 Individuals by the ENIGMA Bipolar Disorder Working Group. Biological Psychiatry, 2022, 91, 582-592.	1.3	29
5	Long-term consequences of COVID-19 on cognitive functioning up to 6Âmonths after discharge: role of depression and impact on quality of life. European Archives of Psychiatry and Clinical Neuroscience, 2022, 272, 773-782.	3.2	67
6	Selective association of cytokine levels and kynurenine/tryptophan ratio with alterations in white matter microstructure in bipolar but not in unipolar depression. European Neuropsychopharmacology, 2022, 55, 96-109.	0.7	20
7	One-year mental health outcomes in a cohort of COVID-19 survivors. Journal of Psychiatric Research, 2022, 145, 118-124.	3.1	57
8	A Delphi-method-based consensus guideline for definition of treatment-resistant depression for clinical trials. Molecular Psychiatry, 2022, 27, 1286-1299.	7.9	68
9	The role of educational attainment and brain morphology in major depressive disorder: Findings from the ENIGMA major depressive disorder consortium , 2022, 131, 664-673.		2
10	Post-COVID-19 Depressive Symptoms: Epidemiology, Pathophysiology, and Pharmacological Treatment. CNS Drugs, 2022, 36, 681-702.	5.9	83
11	Antidepressant chronotherapeutics normalizes prefrontal 1H-MRS glutamate in bipolar depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2022, 119, 110606.	4.8	4
12	Lower levels of glutathione in the anterior cingulate cortex associate with depressive symptoms and white matter hyperintensities in COVID-19 survivors. European Neuropsychopharmacology, 2022, 61, 71-77.	0.7	13
13	Neuropsychological deficits correlate with symptoms severity and cortical thickness in Borderline Personality Disorder. Journal of Affective Disorders, 2021, 278, 181-188.	4.1	2
14	A peripheral inflammatory signature discriminates bipolar from unipolar depression: A machine learning approach. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 105, 110136.	4.8	49
15	Higher baseline interleukin- \hat{l}^2 and TNF- \hat{l}^\pm hamper antidepressant response in major depressive disorder. European Neuropsychopharmacology, 2021, 42, 35-44.	0.7	25
16	Sexual Regional Dimorphism of Post-Adolescent and Middle Age Brain Maturation. A Multi-center 3T MRI Study. Frontiers in Aging Neuroscience, 2021, 13, 622054.	3.4	11
17	ENIGMAâ€Sleep: Challenges, opportunities, and the road map. Journal of Sleep Research, 2021, 30, e13347.	3.2	19
18	Brain-immune crosstalk in the treatment of major depressive disorder. European Neuropsychopharmacology, 2021, 45, 89-107.	0.7	41

#	Article	IF	CITATIONS
19	Persistent psychopathology and neurocognitive impairment in COVID-19 survivors: Effect of inflammatory biomarkers at three-month follow-up. Brain, Behavior, and Immunity, 2021, 94, 138-147.	4.1	299
20	Adiponectin predicts poor response to antidepressant drugs in major depressive disorder. Human Psychopharmacology, 2021, 36, e2793.	1.5	3
21	Circulating inflammatory markers impact cognitive functions in bipolar depression. Journal of Psychiatric Research, 2021, 140, 110-116.	3.1	15
22	Imaging Genetic and Epigenetic Markers in Mood Disorders. , 2021, , 135-150.		0
23	Higher Interleukin 13 differentiates patients with a positive history of suicide attempts in major depressive disorder. Journal of Affective Disorders Reports, 2021, 6, 100254.	1.7	5
24	Mapping Cortical and Subcortical Asymmetry in Obsessive-Compulsive Disorder: Findings From the ENIGMA Consortium. Biological Psychiatry, 2020, 87, 1022-1034.	1.3	73
25	Gender-specific differences in white matter microstructure in healthy adults exposed to mild stress. Stress, 2020, 23, 116-124.	1.8	5
26	Cortico-limbic functional connectivity mediates the effect of early life stress on suicidality in bipolar depressed 5-HTTLPR*s carriers. Journal of Affective Disorders, 2020, 263, 420-427.	4.1	13
27	Structural neuroimaging biomarkers for obsessive-compulsive disorder in the ENIGMA-OCD consortium: medication matters. Translational Psychiatry, 2020, 10, 342.	4.8	43
28	All roads lead to the default-mode networkâ€"global source of DMN abnormalities in major depressive disorder. Neuropsychopharmacology, 2020, 45, 2058-2069.	5.4	93
29	Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain, Behavior, and Immunity, 2020, 89, 594-600.	4.1	1,118
30	Transcranial direct current stimulation: A novel approach in the treatment of vascular depression. Brain Stimulation, 2020, 13, 1559-1565.	1.6	15
31	Proinflammatory Cytokines Predict Brain Metabolite Concentrations in the Anterior Cingulate Cortex of Patients With Bipolar Disorder. Frontiers in Psychiatry, 2020, 11, 590095.	2.6	16
32	Changes of white matter microstructure after successful treatment of bipolar depression. Journal of Affective Disorders, 2020, 274, 1049-1056.	4.1	11
33	Predicting differential diagnosis between bipolar and unipolar depression with multiple kernel learning on multimodal structural neuroimaging. European Neuropsychopharmacology, 2020, 34, 28-38.	0.7	36
34	White Matter Microstructure in Bipolar Disorder Is Influenced by the Interaction between a Glutamate Transporter EAAT1 Gene Variant and Early Stress. Molecular Neurobiology, 2019, 56, 702-710.	4.0	37
35	Natural killer cells protect white matter integrity in bipolar disorder. Brain, Behavior, and Immunity, 2019, 81, 410-421.	4.1	25
36	Grey and white matter structure associates with the activation of the tryptophan to kynurenine pathway in bipolar disorder. Journal of Affective Disorders, 2019, 259, 404-412.	4.1	25

#	Article	IF	CITATIONS
37	Genetic variability of glutamate reuptake: Effect on white matter integrity and working memory in schizophrenia. Schizophrenia Research, 2019, 208, 457-459.	2.0	3
38	Effects of illness duration on cognitive performances in bipolar depression are mediated by white matter microstructure. Journal of Affective Disorders, 2019, 249, 175-182.	4.1	21
39	Markers of neuroinflammation influence measures of cortical thickness in bipolar depression. Psychiatry Research - Neuroimaging, 2019, 285, 64-66.	1.8	38
40	Kynurenine pathway and white matter microstructure in bipolar disorder. European Archives of Psychiatry and Clinical Neuroscience, 2018, 268, 157-168.	3.2	34
41	Sexually divergent effect of COMT Val/met genotype on subcortical volumes in schizophrenia. Brain Imaging and Behavior, 2018, 12, 829-836.	2.1	10
42	A Homer 1 gene variant influences brain structure and function, lithium effects on white matter, and antidepressant response in bipolar disorder: A multimodal genetic imaging study. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 81, 88-95.	4.8	55
43	White matter alterations associate with onset symptom dimension in obsessive–compulsive disorder. Psychiatry and Clinical Neurosciences, 2018, 72, 13-27.	1.8	10
44	Cortical Abnormalities Associated With Pediatric and Adult Obsessive-Compulsive Disorder: Findings From the ENIGMA Obsessive-Compulsive Disorder Working Group. American Journal of Psychiatry, 2018, 175, 453-462.	7.2	197
45	Mild adverse childhood experiences increase neural efficacy during affective theory of mind. Stress, 2018, 21, 84-89.	1.8	7
46	Impact of early and recent stress on white matter microstructure in major depressive disorder. Journal of Affective Disorders, 2018, 225, 289-297.	4.1	24
47	A Glutamate Transporter EAAT1 Gene Variant Influences Amygdala Functional Connectivity in Bipolar Disorder. Journal of Molecular Neuroscience, 2018, 65, 536-545.	2.3	37
48	Obesity influences white matter integrity in schizophrenia. Psychoneuroendocrinology, 2018, 97, 135-142.	2.7	26
49	Catechol-O-methyltransferase Val(108/158)Met polymorphism affects fronto-limbic connectivity during emotional processing in bipolar disorder. European Psychiatry, 2017, 41, 53-59.	0.2	32
50	Body mass index associates with white matter microstructure in bipolar depression. Bipolar Disorders, 2017, 19, 116-127.	1.9	25
51	Night sleep influences white matter microstructure in bipolar depression. Journal of Affective Disorders, 2017, 218, 380-387.	4.1	17
52	Clock genes associate with white matter integrity in depressed bipolar patients. Chronobiology International, 2017, 34, 212-224.	2.0	59
53	Multidimensional cognitive impairment in unipolar and bipolar depression and the moderator effect of adverse childhood experiences. Psychiatry and Clinical Neurosciences, 2017, 71, 309-317.	1.8	25
54	Th17 cells correlate positively to the structural and functional integrity of the brain in bipolar depression and healthy controls. Brain, Behavior, and Immunity, 2017, 61, 317-325.	4.1	54

#	Article	IF	CITATIONS
55	A 5-HT1A receptor promoter polymorphism influences fronto-limbic functional connectivity and depression severity in bipolar disorder. Psychiatry Research - Neuroimaging, 2017, 270, 1-7.	1.8	31
56	The effect of childhood trauma on serum BDNF in bipolar depression is modulated by the serotonin promoter genotype. Neuroscience Letters, 2017, 656, 177-181.	2.1	17
57	Brain-Derived Neurotrophic Factor (Bdnf) and Gray Matter Volume in Bipolar Disorder. European Psychiatry, 2017, 40, 33-37.	0.2	25
58	Common and distinct structural features of schizophrenia and bipolar disorder: The European Network on Psychosis, Affective disorders and Cognitive Trajectory (ENPACT) study. PLoS ONE, 2017, 12, e0188000.	2.5	74
59	Corticolimbic Connectivity Mediates the Relationship between Adverse Childhood Experiences and Symptom Severity in Borderline Personality Disorder. Neuropsychobiology, 2017, 76, 105-115.	1.9	9
60	Higher Baseline Proinflammatory Cytokines Mark Poor Antidepressant Response in Bipolar Disorder. Journal of Clinical Psychiatry, 2017, 78, e986-e993.	2.2	57
61	SREBF-2 polymorphism influences white matter microstructure in bipolar disorder. Psychiatry Research - Neuroimaging, 2016, 257, 39-46.	1.8	33
62	The COMT Val158Met polymorphism moderates the association between cognitive functions and white matter microstructure in schizophrenia. Psychiatric Genetics, 2016, 26, 193-202.	1.1	10
63	Stem Cell Factor (SCF) is a putative biomarker of antidepressant response. Journal of NeuroImmune Pharmacology, 2016, 11, 248-258.	4.1	28
64	Adverse childhood experiences associate to reduced glutamate levels in the hippocampus of patients affected by mood disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016, 71, 117-122.	4.8	17
65	Behavioural genetics of suicidality in bipolar disorder: The interaction between clock and 5-HTT polymorphisms and early life stress. Psychiatry Research, 2016, 246, 846-847.	3.3	0
66	Inflammatory cytokines influence measures of white matter integrity in Bipolar Disorder. Journal of Affective Disorders, 2016, 202, 1-9.	4.1	125
67	Adverse childhood experiences influence the detrimental effect of bipolar disorder and schizophrenia on cortico-limbic grey matter volumes. Journal of Affective Disorders, 2016, 189, 290-297.	4.1	41
68	Neural correlates of anxiety sensitivity in panic disorder: A functional magnetic resonance imaging study. Psychiatry Research - Neuroimaging, 2015, 233, 95-101.	1.8	37
69	Cognitive performances associate with measures of white matter integrity in bipolar disorder. Journal of Affective Disorders, 2015, 174, 342-352.	4.1	73
70	White matter microstructure in bipolar disorder is influenced by the serotonin transporter gene polymorphism 5â€∢scp>HTTLPR⟨/scp⟩. Genes, Brain and Behavior, 2015, 14, 238-250.	2.2	58
71	Abnormal cortico-limbic connectivity during emotional processing correlates with symptom severity in schizophrenia. European Psychiatry, 2015, 30, 590-597.	0.2	40
72	Successful antidepressant chronotherapeutics enhance fronto-limbic neural responses and connectivity in bipolar depression. Psychiatry Research - Neuroimaging, 2015, 233, 243-253.	1.8	40

#	Article	IF	CITATIONS
73	Glutamate EAAT1 transporter genetic variants influence cognitive deficits in bipolar disorder. Psychiatry Research, 2015, 226, 407-408.	3.3	7
74	Lithium and GSK- $3\hat{l}^2$ promoter gene variants influence cortical gray matter volumes in bipolar disorder. Psychopharmacology, 2015, 232, 1325-1336.	3.1	36
75	Right hemisphere neural activations in the recall of waking fantasies and of dreams. Journal of Sleep Research, 2015, 24, 576-582.	3.2	13
76	Sterol Regulatory Element Binding Transcription Factor-1 Gene Variation and Medication Load Influence White Matter Structure in Schizophrenia. Neuropsychobiology, 2015, 71, 112-119.	1.9	14
77	Adverse childhood experiences influence white matter microstructure in patients with schizophrenia. Psychiatry Research - Neuroimaging, 2015, 234, 35-43.	1.8	32
78	Disruption of white matter integrity marks poor antidepressant response in bipolar disorder. Journal of Affective Disorders, 2015, 174, 233-240.	4.1	41
79	Fronto-limbic disconnection in bipolar disorder. European Psychiatry, 2015, 30, 82-88.	0.2	82
80	The serotonin transporter genotype modulates the relationship between early stress and adult suicidality in bipolar disorder. Bipolar Disorders, 2014, 16, 857-866.	1.9	35
81	Adverse childhood experiences influence white matter microstructure in patients with bipolar disorder. Psychological Medicine, 2014, 44, 3069-3082.	4.5	63
82	Effect of early stress on hippocampal gray matter is influenced by a functional polymorphism in EAAT2 in bipolar disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2014, 51, 146-152.	4.8	18
83	Neuropsychological deficits in bipolar depression persist after successful antidepressant treatment. Journal of Affective Disorders, 2014, 156, 144-149.	4.1	12
84	Adverse childhood experiences worsen cognitive distortion during adult bipolar depression. Comprehensive Psychiatry, 2014, 55, 1803-1808.	3.1	11
85	Adverse childhood experiences and gender influence treatment seeking behaviors in obsessive–compulsive disorder. Comprehensive Psychiatry, 2014, 55, 298-301.	3.1	9
86	Neural correlates of delusion in bipolar depression. Psychiatry Research - Neuroimaging, 2014, 221, 1-5.	1.8	24
87	Effect of glutamate transporter EAAT2 gene variants and gray matter deficits on working memory in schizophrenia. European Psychiatry, 2014, 29, 219-225.	0.2	28
88	Rapid Treatment Response of Suicidal Symptoms to Lithium, Sleep Deprivation, and Light Therapy (Chronotherapeutics) in Drug-Resistant Bipolar Depression. Journal of Clinical Psychiatry, 2014, 75, 133-140.	2.2	93
89	Catechol-O-methyltransferase (COMT) genotype biases neural correlates of empathy and perceived personal distress in schizophrenia. Comprehensive Psychiatry, 2013, 54, 181-186.	3.1	16
90	Lithium and GSK3-Î ² Promoter Gene Variants Influence White Matter Microstructure in Bipolar Disorder. Neuropsychopharmacology, 2013, 38, 313-327.	5.4	149

#	Article	IF	Citations
91	Widespread changes of white matter microstructure in obsessive–compulsive disorder: Effect of drug status. European Neuropsychopharmacology, 2013, 23, 581-593.	0.7	63
92	Different Neural Responses to a Moral Valence Decision Task in Unipolar and Bipolar Depression. , 2013, 2013, 1-10.		8
93	Caudate Gray Matter Volume in Obsessive-Compulsive Disorder Is Influenced by Adverse Childhood Experiences and Ongoing Drug Treatment. Journal of Clinical Psychopharmacology, 2012, 32, 544-547.	1.4	27
94	Neurofunctional Correlates of Theory of Mind Deficits in Schizophrenia. Current Topics in Medicinal Chemistry, 2012, 12, 2284-2302.	2.1	39
95	Neural responses to emotional stimuli in comorbid borderline personality disorder and bipolar depression. Psychiatry Research - Neuroimaging, 2012, 203, 61-66.	1.8	21
96	Self-awareness of cognitive functioning in schizophrenia: Patients and their relatives. Psychiatry Research, 2012, 198, 207-211.	3.3	25
97	Influence of an Interaction between Lithium Salts and a Functional Polymorphism in SLC1A2 on the History of Illness in Bipolar Disorder. Molecular Diagnosis and Therapy, 2012, 16, 303-309.	3.8	26
98	Gene–gene interaction of glycogen synthase kinase 3-β and serotonin transporter on human antidepressant response to sleep deprivation. Journal of Affective Disorders, 2012, 136, 514-519.	4.1	45
99	Falta de integridad de la sustancia blanca en la depresi $ ilde{A}^3$ n bipolar como posible marcador estructural de la enfermedad. Psiquiatria Biologica, 2011, 18, 79-88.	0.1	0
100	Disruption of White Matter Integrity in Bipolar Depression as a Possible Structural Marker of Illness. Biological Psychiatry, 2011, 69, 309-317.	1.3	207
101	Tract-specific white matter structural disruption in patients with bipolar disorder. Bipolar Disorders, 2011, 13, 414-424.	1.9	122
102	Recurrence of bipolar mania is associated with catechol-O-methyltransferase Val(108/158)Met polymorphism. Journal of Affective Disorders, 2011, 132, 293-296.	4.1	36
103	Association of the C(â^'1019)G 5-HT1A promoter polymorphism with exposure to stressors preceding hospitalization for bipolar depression. Journal of Affective Disorders, 2011, 132, 297-300.	4.1	25
104	Opposite effects of suicidality and lithium on gray matter volumes in bipolar depression. Journal of Affective Disorders, 2011, 135, 139-147.	4.1	142
105	Emotional reactivity in chronic schizophrenia: structural and functional brain correlates and the influence of adverse childhood experiences. Psychological Medicine, 2011, 41, 509-519.	4.5	54
106	Temporal lobe grey matter volume in schizophrenia is associated with a genetic polymorphism influencing glycogen synthase kinase $3\hat{\epsilon}^2$ activity. Genes, Brain and Behavior, 2010, 9, 365-371.	2,2	54
107	Computer-aided neurocognitive remediation in schizophrenia: Durability of rehabilitation outcomes in a follow-up study. Neuropsychological Rehabilitation, 2010, 20, 659-674.	1.6	33
108	Computer-aided neurocognitive remediation as an enhancing strategy for schizophrenia rehabilitation. Psychiatry Research, 2009, 169, 191-196.	3.3	83

#	Article	IF	CITATIONS
109	Functional and structural brain correlates of theory of mind and empathy deficits in schizophrenia. Schizophrenia Research, 2009, 114, 154-160.	2.0	137
110	The Brief Assessment of Cognition in Schizophrenia. Normative data for the Italian population. Neurological Sciences, 2008, 29, 85-92.	1.9	110
111	Influence of catechol-O-methyltransferase Val158Met polymorphism on neuropsychological and functional outcomes of classical rehabilitation and cognitive remediation in schizophrenia. Neuroscience Letters, 2007, 417, 271-274.	2.1	90