Venkatesh Chelvam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2199843/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure activity relationships (SAR) study to design and synthesize new tubulin inhibitors with enhanced anti-tubulin activity: In silico and in vitro analysis. Journal of Molecular Structure, 2021, 1223, 129204.	3.6	4
2	Role of oxygen defects in basicity of Se doped ZnO nanocatalyst for enhanced triglyceride transesterification in biodiesel production. Catalysis Communications, 2021, 149, 106258.	3.3	24
3	Synthesis of tubuvaline (Tuv) fragment of tubulysin via diastereoselective dihydroxylation of homoallylamine. Synthetic Communications, 2021, 51, 797-809.	2.1	2
4	Developing μSpherePlatform Using a Commercial Hairbrush: An Agarose 3D Culture Platform for Deep-Tissue Imaging of Prostate Cancer. ACS Applied Bio Materials, 2021, 4, 4254-4270.	4.6	3
5	Synthesis of 1-indolyl-3,5,8-substituted γ-carbolines: one-pot solvent-free protocol and biological evaluation. Beilstein Journal of Organic Chemistry, 2021, 17, 1453-1463.	2.2	3
6	lmaging of prostate cancer: optimizing affinity to prostate specific membrane antigen by spacer modifications in a tumor spheroid model. Journal of Biomolecular Structure and Dynamics, 2021, , 1-22.	3.5	4
7	Agarose Microâ€Well Platform for Rapid Generation of Homogenous 3D Tumor Spheroids. Current Protocols, 2021, 1, e199.	2.9	2
8	A targeted near-infrared nanoprobe for deep-tissue penetration and imaging of prostate cancer. Biomaterials Science, 2021, 9, 2295-2312.	5.4	14
9	Defects induced multicolor down- and up-conversion fluorescence in Se doped ZnO nanorods by single wavelength excitation. Optical Materials, 2020, 107, 110122.	3.6	5
10	Serendipitous base catalysed condensation–heteroannulation of iminoesters: a regioselective route to the synthesis of 4,6-disubstituted 5-azaindoles. Organic and Biomolecular Chemistry, 2020, 18, 1582-1587.	2.8	6
11	Tyrosine-based asymmetric urea ligand for prostate carcinoma: Tuning biological efficacy through in silico studies. Bioorganic Chemistry, 2019, 91, 103154.	4.1	6
12	Comparison of prostateâ€specific membrane antigen ligands in clinical translation research for diagnosis of prostate cancer. Cancer Reports, 2019, 2, e1169.	1.4	17
13	Synthesis of the Deacetoxytubuvaline Fragment of Pretubulysin and its Lipophilic Analogues for Enhanced Permeability in Cancer Cell Lines. Synlett, 2019, 30, 77-81.	1.8	3
14	Selective liposome targeting of folate receptor positive immune cells in inflammatory diseases. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1033-1043.	3.3	46
15	Preparation of Ligandâ€Targeted Drug Conjugates for Cancer Therapy and Their Evaluation <i>In Vitro</i> . Current Protocols in Chemical Biology, 2018, 10, e50.	1.7	2
16	Efficient "turn-on―nanosensor by dual emission-quenching mechanism of functionalized Se doped ZnO nanorods for mercury (II) detection. Applied Nanoscience (Switzerland), 2018, 8, 1973-1987.	3.1	10
17	Novel solid-phase strategy for the synthesis of ligand-targeted fluorescent-labelled chelating peptide conjugates as a theranostic tool for cancer. Beilstein Journal of Organic Chemistry, 2018, 14, 2665-2679.	2.2	9
18	Synthesis of tubuphenylalanine and epi-tubuphenylalanine via regioselective aziridine ring opening with carbon nucleophiles followed by hydroboration-oxidation of 1,1-substituted amino alkenes. Tetrahedron, 2018, 74, 6946-6953.	1.9	4

VENKATESH CHELVAM

#	Article	IF	CITATIONS
19	<i>In Vivo</i> Evaluation of Ligand Targeted Drug Conjugates for Cancer Therapy. Current Protocols in Chemical Biology, 2018, 10, e49.	1.7	1
20	Folate-conjugated liposomes target and deliver therapeutics to immune cells in a rat model of rheumatoid arthritis. Nanomedicine, 2017, 12, 2441-2451.	3.3	32
21	Synthesis and Evaluation of Folate-Conjugated Phenanthraquinones for Tumor-Targeted Oxidative Chemotherapy. Open Journal of Medicinal Chemistry, 2016, 06, 1-17.	0.7	6
22	Comparison of nanoparticle penetration into solid tumors and sites of inflammation: studies using targeted and nontargeted liposomes. Nanomedicine, 2015, 10, 1439-1449.	3.3	19
23	In vivo mouse fluorescence imaging for folate-targeted delivery and release kinetics. Biomedical Optics Express, 2014, 5, 2662.	2.9	16
24	Development of Tumor-Targeted Near Infrared Probes for Fluorescence Guided Surgery. Bioconjugate Chemistry, 2013, 24, 1075-1080.	3.6	92
25	A Folate Receptor-α–Specific Ligand That Targets Cancer Tissue and Not Sites of Inflammation. Journal of Nuclear Medicine, 2012, 53, 1127-1134.	5.0	39