Yangyang Fu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2199820/publications.pdf

Version: 2024-02-01

50	902	19	27
papers	citations	h-index	g-index
50	50	50	492 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Observation of electron runaway in a tip-plane air gap under negative nanosecond pulse voltage by PIC/MCC simulation. Plasma Sources Science and Technology, 2022, 31, 045027.	3.1	15
2	Benchmark of the KGMf with a coupled Boltzmann equation solver. Computer Physics Communications, 2021, 260, 107748.	7. 5	5
3	Extraordinary wave modes in purely imaginary metamaterials beyond the critical angle. Optics Express, 2021, 29, 2874.	3.4	3
4	Transition characteristics and electron kinetics in microhollow cathode discharges. Journal of Applied Physics, $2021,129,.$	2.5	10
5	Comparison of 1D and 2D particle-in-cell simulations for DC magnetron sputtering discharges. Physics of Plasmas, 2021, 28, .	1.9	10
6	Electron dynamics in radio frequency magnetron sputtering argon discharges with a dielectric target. Plasma Sources Science and Technology, 2021, 30, 035019.	3.1	23
7	Direct current microplasma formation around microstructure arrays. Applied Physics Letters, 2021, 118, .	3.3	9
8	Breakdown, discharge modes, and gaseous recovery of atmospheric air with repetitive 10 ns pulses. Physics of Plasmas, 2021, 28, .	1.9	11
9	Similarity properties in capacitive radio frequency plasmas with nonlinear collision processes. Plasma Sources Science and Technology, 2021, 30, 115009.	3.1	8
10	Multilayer-Structured Discharge in Plasma Ionization Breakdown near a Dielectric Surface. , 2021, , .		0
11	Microplasma Formation Around a Microstructured Surface. , 2021, , .		1
12	Generalizing Similarity Laws for Radio-Frequency Discharge Plasmas across Nonlinear Transition Regimes. Physical Review Applied, 2021, 16, .	3.8	11
13	Observation of multilayer-structured discharge in plasma ionization breakdown. Applied Physics Letters, 2021, 119, .	3.3	13
14	Similarity law and frequency scaling in low-pressure capacitive radio frequency plasmas. Applied Physics Letters, 2020, 117, .	3.3	19
15	Transitions between electron emission and gas breakdown mechanisms across length and pressure scales. Journal of Applied Physics, 2020, 128, .	2.5	48
16	Similarity of capacitive radio-frequency discharges in nonlocal regimes. Physics of Plasmas, 2020, 27, 113501.	1.9	15
17	Influence of metastable atoms in low pressure magnetized radio-frequency argon discharges. Journal Physics D: Applied Physics, 2020, 53, 435201.	2.8	19
18	Electrical breakdown from macro to micro/nano scales: a tutorial and a review of the state of the art. Plasma Research Express, 2020, 2, 013001.	0.9	66

#	Article	IF	CITATIONS
19	High-energy ballistic electrons in low-pressure radio-frequency plasmas. Plasma Sources Science and Technology, 2020, 29, 09LT01.	3.1	30
20	Transition of low-temperature plasma similarity laws from low to high ionization degree regimes. Plasma Sources Science and Technology, 2019, 28, 095012.	3.1	8
21	Gas breakdown and its scaling law in microgaps with multiple concentric cathode protrusions. Applied Physics Letters, 2019, 114, .	3.3	31
22	Spatio-temporal dynamics of pulsed gas breakdown in microgaps. Physics of Plasmas, 2019, 26, 014506.	1.9	24
23	Temporal single-surface multipactor dynamics under obliquely incident linearly polarized electric field. Physics of Plasmas, 2019, 26, .	1.9	23
24	Gas Breakdown in Microgaps With a Surface Protrusion On the Electrode. IEEE Transactions on Plasma Science, 2019, 47, 2011-2019.	1.3	14
25	On the Similarities of Low-Temperature Plasma Discharges. IEEE Transactions on Plasma Science, 2019, 47, 1994-2003.	1.3	29
26	Effect of surface protrusion on plasma sheath properties in atmospheric microdischarges. Physics of Plasmas, 2018, 25, .	1.9	19
27	Characterizing the dominant ions in low-temperature argon plasmas in the range of $1\hat{a}\in 800$ Torr. Physics of Plasmas, 2018, 25, .	1.9	12
28	Coherent perfect absorption and laser modes in a cylindrical structure of conjugate metamaterials. New Journal of Physics, 2018, 20, 013015.	2.9	10
29	Evaluating microgap breakdown mode transition with electric field non-uniformity. Plasma Sources Science and Technology, 2018, 27, 095014.	3.1	25
30	Gas breakdown in atmospheric pressure microgaps with a surface protrusion on the cathode. Applied Physics Letters, 2018, 112, .	3.3	27
31	Paschen's curve in microgaps with an electrode surface protrusion. Applied Physics Letters, 2018, 113, .	3.3	35
32	Effect of distribution of electric field on low-pressure gas breakdown. Physics of Plasmas, 2017, 24, .	1.9	29
33	Asymmetric effects in waveguide systems using PT symmetry and zero index metamaterials. Scientific Reports, 2017, 7, 12476.	3.3	11
34	Coherent perfect absorber and laser modes in purely imaginary metamaterials. Physical Review A, 2017, 96, .	2.5	18
35	Investigation on the similarity law of low-pressure glow discharges based on the light intensity distributions in geometrically similar gaps. Physics of Plasmas, 2017, 24, .	1.9	7
36	Transition characteristics of low-pressure discharges in a hollow cathode. Physics of Plasmas, 2017, 24, 083516.	1.9	20

#	Article	IF	Citations
37	Pressure effect on a tandem hollow cathode discharge in argon. Physics of Plasmas, 2017, 24, .	1.9	16
38	Investigation on the effect of nonlinear processes on similarity law in high-pressure argon discharges. Physics of Plasmas, 2017, 24, 113518.	1.9	13
39	Electromagnetic wave propagations in conjugate metamaterials. Optics Express, 2017, 25, 4952.	3.4	19
40	Intersection of Paschen's curves for argon. Physics of Plasmas, 2016, 23, .	1.9	26
41	Similarity of gas discharge in lowâ€pressure argon gaps between two planeâ€parallel electrodes. High Voltage, 2016, 1, 86-89.	4.7	30
42	Zero index metamaterials with PT symmetry in a waveguide system. Optics Express, 2016, 24, 1648.	3.4	61
43	Modification of Paschen's law for the nonuniform electric field between two plane-parallel electrodes., 2015,,.		O
44	Additional modes in a waveguide system of zero-index-metamaterials with defects. Scientific Reports, 2015, 4, 6428.	3.3	26
45	Cathode fall thickness of abnormal glow discharges between parallel-plane electrodes in different radii at low pressure. Physics of Plasmas, 2015, 22, .	1.9	14
46	Validity of the similarity law for the glow discharges in non-plane-parallel gaps. Plasma Sources Science and Technology, 2014, 23, 065035.	3.1	15
47	Online Measurement of Pulsed Electric Field of Insulator Surface in Vacuum Based on Kerr Effect. IEEE Transactions on Plasma Science, 2014, 42, 2986-2990.	1.3	5
48	Distortion of the Electric Field Near Insulator Surface Observed With Electro-Optical Technique Measuring Kerr Effect. IEEE Transactions on Plasma Science, 2014, 42, 2574-2575.	1.3	0
49	Research on Similarity Law of Glow Discharge in Argon at Low Pressure by Numerical Simulation. IEEE Transactions on Plasma Science, 2014, 42, 1544-1551.	1.3	19
50	On-line measurement of pulsed electric-field of insulator surface in vacuum based on Kerr effect., 2013,,.		O