
James Douglas Engel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2199757/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nature Genetics, 1995, 11, 40-44.	21.4	576
2	Thalassaemia. Lancet, The, 2012, 379, 373-383.	13.7	371
3	Rare variant discovery by deep whole-genome sequencing of 1,070 Japanese individuals. Nature Communications, 2015, 6, 8018.	12.8	352
4	Developmental regulation of β-globin gene switching. Cell, 1988, 55, 17-26.	28.9	344
5	Gata3 loss leads to embryonic lethality due to noradrenaline deficiency of the sympathetic nervous system. Nature Genetics, 2000, 25, 209-212.	21.4	308
6	Erythroid transcription factor GATA-1 is abundantly transcribed in mouse testis. Nature, 1993, 362, 466-468.	27.8	296
7	The world according to Maf. Nucleic Acids Research, 1997, 25, 2953-2959.	14.5	248
8	A 3′ enhancer is required for temporal and tissue-specific transcriptional activation of the chicken adult β-globin gene. Nature, 1986, 323, 731-734.	27.8	209
9	A Remote GATA2 Hematopoietic Enhancer Drives Leukemogenesis in inv(3)(q21;q26) by Activating EVI1 Expression. Cancer Cell, 2014, 25, 415-427.	16.8	194
10	MafB Is Essential for Renal Development and F4/80 Expression in Macrophages. Molecular and Cellular Biology, 2006, 26, 5715-5727.	2.3	189
11	Effects of altered gene order or orientation of the locus control region on human β-globin gene expression in mice. Nature, 1999, 398, 344-348.	27.8	170
12	Conditional Gata2 inactivation results in HSC loss and lymphatic mispatterning. Journal of Clinical Investigation, 2012, 122, 3705-3717.	8.2	136
13	GATA-3 is required for early T lineage progenitor development. Journal of Experimental Medicine, 2009, 206, 2987-3000.	8.5	133
14	Oral tetrahydrouridine and decitabine for non-cytotoxic epigenetic gene regulation in sickle cell disease: A randomized phase 1 study. PLoS Medicine, 2017, 14, e1002382.	8.4	107
15	The Mouse GATA-2 Gene is Expressed in the Para-Aortic Splanchnopleura and Aorta-Gonads and Mesonephros Region. Blood, 1999, 93, 4196-4207.	1.4	102
16	An embryonic/fetal beta-type globin gene repressor contains a nuclear receptor TR2/TR4 heterodimer. EMBO Journal, 2002, 21, 3434-3442.	7.8	100
17	GATA1-related leukaemias. Nature Reviews Cancer, 2008, 8, 279-287.	28.4	100
18	Amelioration of inflammation and tissue damage in sickle cell model mice by Nrf2 activation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12169-12174	7.1	99

#	Article	IF	CITATIONS
19	A chicken histone H3 gene contains intervening sequences. Nature, 1982, 297, 434-436.	27.8	98
20	Nuclear Receptors TR2 and TR4 Recruit Multiple Epigenetic Transcriptional Corepressors That Associate Specifically with the Embryonic β-Type Globin Promoters in Differentiated Adult Erythroid Cells. Molecular and Cellular Biology, 2011, 31, 3298-3311.	2.3	98
21	GATA factor transgenes under GATA-1 locus control rescue germline GATA-1 mutant deficiencies. Blood, 2000, 96, 910-916.	1.4	96
22	Embryonic and fetal β-globin gene repression by the orphan nuclear receptors, TR2 and TR4. EMBO Journal, 2007, 26, 2295-2306.	7.8	89
23	Differential roles of GATAâ€1 and GATAâ€2 in growth and differentiation of mast cells. Genes To Cells, 1998, 3, 39-50.	1.2	87
24	Long range interaction of cis-DNA elements mediated by architectural transcription factor Bach1. Genes To Cells, 1999, 4, 643-655.	1.2	85
25	Long non-coding RNA-dependent mechanism to regulate heme biosynthesis and erythrocyte development. Nature Communications, 2018, 9, 4386.	12.8	84
26	Localization of Distant Urogenital System-, Central Nervous System-, and Endocardium-Specific Transcriptional Regulatory Elements in the GATA-3 Locus. Molecular and Cellular Biology, 1999, 19, 1558-1568.	2.3	82
27	Gata3 participates in a complex transcriptional feedback network to regulate sympathoadrenal differentiation. Development (Cambridge), 2006, 133, 3871-3881.	2.5	81
28	Multiple mouse models of primary lymphedema exhibit distinct defects in lymphovenous valve development. Developmental Biology, 2016, 409, 218-233.	2.0	78
29	Erythroid-specific transcription of the chicken histone H5 gene is directed by a 3′ enhancer. Nature, 1987, 328, 827-830.	27.8	76
30	The LSD1 inhibitor RN-1 induces fetal hemoglobin synthesis and reduces disease pathology in sickle cell mice. Blood, 2015, 126, 386-396.	1.4	74
31	In situ mapping identifies distinct vascular niches for myelopoiesis. Nature, 2021, 590, 457-462.	27.8	74
32	GATA Motifs Regulate Early Hematopoietic Lineage-Specific Expression of the Gata2 Gene. Molecular and Cellular Biology, 2005, 25, 7005-7020.	2.3	70
33	Context-dependent EKLF responsiveness defines the developmental specificity of the human varepsilon -globin gene in erythroid cells of YAC transgenic mice. Genes and Development, 2000, 14, 2778-2794.	5.9	69
34	The Orphan Nuclear Receptor TR4 Is a Vitamin A-activated Nuclear Receptor. Journal of Biological Chemistry, 2011, 286, 2877-2885.	3.4	69
35	Fetal Globin Gene Repressors as Drug Targets for Molecular Therapies To Treat the β-Globinopathies. Molecular and Cellular Biology, 2014, 34, 3560-3569.	2.3	59
36	Multiple, Distant Gata2 Enhancers Specify Temporally and Tissue-Specific Patterning in the Developing Urogenital System. Molecular and Cellular Biology, 2004, 24, 10263-10276.	2.3	53

#	Article	IF	CITATIONS
37	The TR2 and TR4 orphan nuclear receptors repress <i>Gata1</i> transcription. Genes and Development, 2007, 21, 2832-2844.	5.9	49
38	Temporal and Spatial Control of Murine GATA-3 Transcription by Promoter-Proximal Regulatory Elements. Developmental Biology, 1997, 188, 1-16.	2.0	46
39	Developmental transcriptome analysis of human erythropoiesis. Human Molecular Genetics, 2014, 23, 4528-4542.	2.9	45
40	Upstream and downstream of erythroid transcription factor GATA-1. Genes To Cells, 1997, 2, 107-115.	1.2	44
41	Forced TR2/TR4 expression in sickle cell disease mice confers enhanced fetal hemoglobin synthesis and alleviated disease phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18808-18813.	7.1	42
42	An NK and T Cell Enhancer Lies 280 Kilobase Pairs 3′ to the <i>Gata3</i> Structural Gene. Molecular and Cellular Biology, 2011, 31, 1894-1904.	2.3	41
43	Mesodermal- vs. neuronal-specific expression of MafK is elicited by different promoters. Genes To Cells, 1996, 1, 223-238.	1.2	40
44	Hemodynamic regulation of perivalvular endothelial gene expression prevents deep venous thrombosis. Journal of Clinical Investigation, 2019, 129, 5489-5500.	8.2	40
45	Transcription factor GATAâ€3 is essential for lens development. Developmental Dynamics, 2009, 238, 2280-2291.	1.8	39
46	GATA2 Regulates Body Water Homeostasis through Maintaining Aquaporin 2 Expression in Renal Collecting Ducts. Molecular and Cellular Biology, 2014, 34, 1929-1941.	2.3	37
47	Adult Stage Î ³ -Globin Silencing Is Mediated by a Promoter Direct Repeat Element. Molecular and Cellular Biology, 2005, 25, 3443-3451.	2.3	35
48	Fetal Hemoglobin Induction by Epigenetic Drugs. Seminars in Hematology, 2018, 55, 60-67.	3.4	35
49	Dosage-dependent rescue of definitive nephrogenesis by a distant Gata3 enhancer. Developmental Biology, 2007, 301, 568-577.	2.0	34
50	Disruption of the <i>Hbs1l-Myb</i> Locus Causes Hereditary Persistence of Fetal Hemoglobin in a Mouse Model. Molecular and Cellular Biology, 2013, 33, 1687-1695.	2.3	34
51	Reduced BMP4 abundance in <i>Gata2</i> hypomorphic mutant mice result in uropathies resembling human CAKUT. Genes To Cells, 2008, 13, 159-170.	1.2	32
52	GATA2 haploinsufficiency accelerates EVI1-driven leukemogenesis. Blood, 2017, 130, 908-919.	1.4	30
53	GATA2 controls lymphatic endothelial cell junctional integrity and lymphovenous valve morphogenesis through <i>miR-126</i> . Development (Cambridge), 2019, 146, .	2.5	30
54	Intron 1 GATA site enhances ALAS2 expression indispensably during erythroid differentiation. Nucleic Acids Research, 2017, 45, 657-671.	14.5	29

#	Article	IF	CITATIONS
55	TRIM28 is essential for erythroblast differentiation in the mouse. Blood, 2013, 122, 3798-3807.	1.4	26
56	BAP1 regulation of the key adaptor protein NCoR1 is critical for γ-globin gene repression. Genes and Development, 2018, 32, 1537-1549.	5.9	24
57	Partial Rescue of GATA-3 by Yeast Artificial Chromosome Transgenes. Developmental Biology, 1998, 204, 451-463.	2.0	22
58	PGC-1 Coactivator Activity Is Required for Murine Erythropoiesis. Molecular and Cellular Biology, 2014, 34, 1956-1965.	2.3	22
59	Genome-wide analysis of pseudogenes reveals HBBP1's human-specific essentiality in erythropoiesis and implication in β-thalassemia. Developmental Cell, 2021, 56, 478-493.e11.	7.0	22
60	Compound loss of function of nuclear receptors Tr2 and Tr4 leads to induction of murine embryonic β-type globin genes. Blood, 2015, 125, 1477-1487.	1.4	20
61	Efficacy and safety of long-term RN-1 treatment to increase HbF in baboons. Blood, 2017, 129, 260-263.	1.4	20
62	Lineage-affiliated transcription factors bind the Gata3 Tce1 enhancer to mediate lineage-specific programs. Journal of Clinical Investigation, 2016, 126, 865-878.	8.2	20
63	Defining the Functional Boundaries of the Gata2 Locus by Rescue with a Linked Bacterial Artificial Chromosome Transgene. Journal of Biological Chemistry, 2008, 283, 8976-8983.	3.4	19
64	UG4 Enhancer-Driven GATA-2 and Bone Morphogenetic Protein 4 Complementation Remedies the CAKUT Phenotype in <i>Gata2</i> Hypomorphic Mutant Mice. Molecular and Cellular Biology, 2012, 32, 2312-2322.	2.3	19
65	Reactivation of Fetal Hemoglobin for Treating β-Thalassemia and Sickle Cell Disease. Advances in Experimental Medicine and Biology, 2017, 1013, 177-202.	1.6	18
66	The Role of Transcription Factors in Erythroid Development. Annals of Medicine, 1996, 28, 47-55.	3.8	17
67	Stage-specific roles for Zmiz1 in Notch-dependent steps of early T-cell development. Blood, 2018, 132, 1279-1292.	1.4	17
68	Oral administration of the LSD1 inhibitor ORY-3001 increases fetal hemoglobin in sickle cell mice and baboons. Experimental Hematology, 2018, 67, 60-64.e2.	0.4	17
69	An erythroid-to-myeloid cell fate conversion is elicited by LSD1 inactivation. Blood, 2021, 138, 1691-1704.	1.4	17
70	Meticulous AP-1 factors. Nature, 1994, 367, 516-517.	27.8	16
71	Proper Development of the Outer Longitudinal Smooth Muscle of the Mouse Pylorus Requires Nkx2-5 and Gata3. Gastroenterology, 2014, 146, 157-165.e10.	1.3	16
72	EVI1 and GATA2 misexpression induced by inv(3)(q21q26) contribute to megakaryocyte-lineage skewing and leukemogenesis. Blood Advances, 2020, 4, 1722-1736.	5.2	16

#	Article	IF	CITATIONS
73	Decoding the pathogenesis of Diamond–Blackfan anemia using single-cell RNA-seq. Cell Discovery, 2022, 8, 41.	6.7	14
74	A core region of themafKgene INpromoter directs neuroneâ€specific transcriptionin vivo. Genes To Cells, 1998, 3, 671-684.	1.2	13
75	A monoallelic-to-biallelic T-cell transcriptional switch regulates GATA3 abundance. Genes and Development, 2015, 29, 1930-1941.	5.9	13
76	Derepression of the DNA Methylation Machinery of the Gata1 Gene Triggers the Differentiation Cue for Erythropoiesis. Molecular and Cellular Biology, 2017, 37, .	2.3	13
77	Global dynamics of stage-specific transcription factor binding during thymocyte development. Scientific Reports, 2018, 8, 5605.	3.3	13
78	<i>Gata3</i> Hypomorphic Mutant Mice Rescued with a Yeast Artificial Chromosome Transgene Suffer a Glomerular Mesangial Cell Defect. Molecular and Cellular Biology, 2016, 36, 2272-2281.	2.3	11
79	The orphan nuclear receptor TR4 regulates erythroid cell proliferation and maturation. Blood, 2017, 130, 2537-2547.	1.4	11
80	USING DIRECTED INFORMATION TO BUILD BIOLOGICALLY RELEVANT INFLUENCE NETWORKS. , 2007, , .		11
81	Modeling dynamic functional relationship networks and application to <i>ex vivo</i> human erythroid differentiation. Bioinformatics, 2014, 30, 3325-3333.	4.1	10
82	Inhibition of LSD1 by small molecule inhibitors stimulates fetal hemoglobin synthesis. Blood, 2019, 133, 2455-2459.	1.4	10
83	UNC0638 induces high levels of fetal hemoglobin expression in β-thalassemia/HbE erythroid progenitor cells. Annals of Hematology, 2020, 99, 2027-2036.	1.8	10
84	CATA3 is essential for separating patterning domains during facial morphogenesis. Development (Cambridge), 2021, 148, .	2.5	10
85	A Gata3 3′ Distal Otic Vesicle Enhancer Directs Inner Ear-Specific Gata3 Expression. Molecular and Cellular Biology, 2018, 38, .	2.3	9
86	Regulatory network inferred using expression data of small sample size: application and validation in erythroid system. Bioinformatics, 2015, 31, 2537-2544.	4.1	8
87	An international effort to cure a global health problem: A report on the 19th Hemoglobin Switching Conference. Experimental Hematology, 2015, 43, 821-837.	0.4	7
88	High-Throughput Single-Cell Sequencing of both TCR-β Alleles. Journal of Immunology, 2018, 201, 3465-3470.	0.8	7
89	Spiral ganglion cell degenerationâ€induced deafness as a consequence of reduced GATA factor activity. Genes To Cells, 2019, 24, 534-545.	1.2	7
90	Biased, Non-equivalent Gene-Proximal and -Distal Binding Motifs of Orphan Nuclear Receptor TR4 in Primary Human Erythroid Cells. PLoS Genetics, 2014, 10, e1004339.	3.5	6

#	Article	IF	CITATIONS
91	Gata2 heterozygous mutant mice exhibit reduced inflammatory responses and impaired bacterial clearance. IScience, 2021, 24, 102836.	4.1	6
92	Identification of novel γ-globin inducers among all potential erythroid druggable targets. Blood Advances, 2022, 6, 3280-3285.	5.2	6
93	A new murine <i>Rpl5</i> (<i>uL18</i>) mutation provides a unique model of variably penetrant Diamond-Blackfan anemia. Blood Advances, 2021, 5, 4167-4178.	5.2	5
94	GATA3 Abundance Is a Critical Determinant of T Cell Receptor \hat{I}^2 Allelic Exclusion. Molecular and Cellular Biology, 2017, 37, .	2.3	4
95	Epigenetic activities in erythroid cell gene regulation. Seminars in Hematology, 2021, 58, 4-9.	3.4	4
96	SEC23A rescues SEC23B-deficient congenital dyserythropoietic anemia type II. Science Advances, 2021, 7, eabj5293.	10.3	4
97	Transvection-like interchromosomal interaction is not observed at the transcriptional level when tested in the Rosa26 locus in mouse. PLoS ONE, 2019, 14, e0203099.	2.5	2
98	GATA2 functions in adrenal chromaffin cells. Genes To Cells, 2020, 25, 607-614.	1.2	2
99	LSD1 Inhibitors Induce Fetal Hemoglobin in Primary Human Erythroid Cells. Blood, 2018, 132, 1066-1066.	1.4	2
100	Spatial Mapping of Myelopoiesis Reveals the Bone Marrow Niche for Monocyte Dendritic Cell Progenitors. Blood, 2019, 134, 528-528.	1.4	2
101	Structure and regulation of vertebrate δ‐aminolevulinate synthases. Stem Cells, 1994, 12, 11-25.	3.2	1
102	Directed-Information Based Feature-Selection for Tissue-Specific Sequences. , 2007, , .		0
103	MafC-Null Mice Show Delayed Leukocyte Engraftment Following Whole Bone Marrow Transplant Blood, 2006, 108, 1322-1322.	1.4	0
104	In Vivo Effects of LSD1 Inhibition By Small Chemical Inhibitors in Sickle Cell Mice. Blood, 2017, 130, 968-968.	1.4	0
105	The LSD1 Inhibitor RN-1 Increases γ-Globin Expression in Baboons By Targeting an Early Event Responsible for γ-Globin Repression. Blood, 2018, 132, 1054-1054.	1.4	0