Paul T Schumacker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2198847/publications.pdf Version: 2024-02-01

		5896	5539
171	29,731	81	163
papers	citations	h-index	g-index
175	175	175	32318
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 11715-11720.	7.1	1,724
2	Reactive Oxygen Species Generated at Mitochondrial Complex III Stabilize Hypoxia-inducible Factor-1α during Hypoxia. Journal of Biological Chemistry, 2000, 275, 25130-25138.	3.4	1,697
3	Bcl-xL Regulates the Membrane Potential and Volume Homeostasis of Mitochondria. Cell, 1997, 91, 627-637.	28.9	1,345
4	Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metabolism, 2005, 1, 401-408.	16.2	1,321
5	Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles' heel?. Nature Reviews Cancer, 2014, 14, 709-721.	28.4	1,238
6	Reactive oxygen species in cancer cells: Live by the sword, die by the sword. Cancer Cell, 2006, 10, 175-176.	16.8	1,056
7	Mitochondria Are Required for Antigen-Specific T Cell Activation through Reactive Oxygen Species Signaling. Immunity, 2013, 38, 225-236.	14.3	981
8	Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Experimental Physiology, 2006, 91, 807-819.	2.0	743
9	Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature, 2010, 468, 696-700.	27.8	717
10	Unraveling the Biological Roles of Reactive Oxygen Species. Cell Metabolism, 2011, 13, 361-366.	16.2	661
11	Reactive Oxygen Species Released from Mitochondria during Brief Hypoxia Induce Preconditioning in Cardiomyocytes. Journal of Biological Chemistry, 1998, 273, 18092-18098.	3.4	620
12	Intracellular Signaling by Reactive Oxygen Species during Hypoxia in Cardiomyocytes. Journal of Biological Chemistry, 1998, 273, 11619-11624.	3.4	601
13	Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-1± activation. Cell Metabolism, 2005, 1, 393-399.	16.2	566
14	Bcl-xL Prevents Cell Death following Growth Factor Withdrawal by Facilitating Mitochondrial ATP/ADP Exchange. Molecular Cell, 1999, 3, 159-167.	9.7	476
15	Role of Oxidants in NF-κB Activation and TNF-α Gene Transcription Induced by Hypoxia and Endotoxin. Journal of Immunology, 2000, 165, 1013-1021.	0.8	472
16	Outer mitochondrial membrane permeability can regulate coupled respiration and cell survival. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 4666-4671.	7.1	397
17	Mitochondrial Fission Triggered by Hyperglycemia Is Mediated by ROCK1 Activation in Podocytes and Endothelial Cells. Cell Metabolism, 2012, 15, 186-200.	16.2	395
18	Loss of the SdhB, but Not the SdhA, Subunit of Complex II Triggers Reactive Oxygen Species-Dependent Hypoxia-Inducible Factor Activation and Tumorigenesis. Molecular and Cellular Biology, 2008, 28,	2.3	392

#	Article	IF	CITATIONS
19	Significant Levels of Oxidants are Generated by Isolated Cardiomyocytes During Ischemia Prior to Reperfusion. Journal of Molecular and Cellular Cardiology, 1997, 29, 2571-2583.	1.9	359
20	Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nature Metabolism, 2022, 4, 651-662.	11.9	356
21	Model for Hypoxic Pulmonary Vasoconstriction Involving Mitochondrial Oxygen Sensing. Circulation Research, 2001, 88, 1259-1266.	4.5	345
22	Cellular oxygen sensing by mitochondria: old questions, new insight. Journal of Applied Physiology, 2000, 88, 1880-1889.	2.5	344
23	Hypoxia Triggers AMPK Activation through Reactive Oxygen Species-Mediated Activation of Calcium Release-Activated Calcium Channels. Molecular and Cellular Biology, 2011, 31, 3531-3545.	2.3	329
24	Mitochondrial complex III is essential for suppressive function of regulatory T cells. Nature, 2019, 565, 495-499.	27.8	323
25	Hypoxia Triggers Subcellular Compartmental Redox Signaling in Vascular Smooth Muscle Cells. Circulation Research, 2010, 106, 526-535.	4.5	312
26	Reactive Oxygen Species in Cancer: A Dance with the Devil. Cancer Cell, 2015, 27, 156-157.	16.8	310
27	Preconditioning in Cardiomyocytes Protects by Attenuating Oxidant Stress at Reperfusion. Circulation Research, 2000, 86, 541-548.	4.5	287
28	Mitochondrial Reactive Oxygen Species Trigger Calcium Increases During Hypoxia in Pulmonary Arterial Myocytes. Circulation Research, 2002, 91, 719-726.	4.5	273
29	Generation of superoxide in cardiomyocytes during ischemia before reperfusion. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H2240-H2246.	3.2	248
30	Disruption of mitochondrial complex I induces progressive parkinsonism. Nature, 2021, 599, 650-656.	27.8	247
31	The mitochondrial respiratory chain is essential for haematopoietic stem cell function. Nature Cell Biology, 2017, 19, 614-625.	10.3	244
32	Efferocytosis Fuels Requirements of Fatty Acid Oxidation and the Electron Transport Chain to Polarize Macrophages for Tissue Repair. Cell Metabolism, 2019, 29, 443-456.e5.	16.2	233
33	Mitochondrial ROS initiate phosphorylation of p38 MAP kinase during hypoxia in cardiomyocytes. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 282, L1324-L1329.	2.9	232
34	Menadione triggers cell death through ROS-dependent mechanisms involving PARP activation without requiring apoptosis. Free Radical Biology and Medicine, 2010, 49, 1925-1936.	2.9	213
35	Regulation of Hypoxia-induced Pulmonary Hypertension by Vascular Smooth Muscle Hypoxia-Inducible Factor-1î±. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 314-324.	5.6	209
36	ROS and NO trigger early preconditioning: relationship to mitochondrial K _{ATP} channel. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H299-H308.	3.2	206

#	Article	IF	CITATIONS
37	Mitochondrial Reactive Oxygen Species Trigger Hypoxia-Inducible Factor-Dependent Extension of the Replicative Life Span during Hypoxia. Molecular and Cellular Biology, 2007, 27, 5737-5745.	2.3	202
38	The role of calcium and mitochondrial oxidant stress in the loss of substantia nigra pars compacta dopaminergic neurons in Parkinson's disease. Neuroscience, 2011, 198, 221-231.	2.3	192
39	Nitric Oxide Acutely Inhibits Neuronal Energy Production. Journal of Neuroscience, 1999, 19, 147-158.	3.6	189
40	Cell death during ischemia: relationship to mitochondrial depolarization and ROS generation. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H549-H558.	3.2	186
41	Cells depleted of mitochondrial DNA (p0) yield insight into physiological mechanisms. FEBS Letters, 1999, 454, 173-176.	2.8	179
42	Calcium, Bioenergetics, and Neuronal Vulnerability in Parkinson's Disease. Journal of Biological Chemistry, 2013, 288, 10736-10741.	3.4	179
43	Reactive Oxygen Species Are Downstream Products of TRAF-mediated Signal Transduction. Journal of Biological Chemistry, 2001, 276, 42728-42736.	3.4	174
44	Increases in Mitochondrial Reactive Oxygen Species Trigger Hypoxia-Induced Calcium Responses in Pulmonary Artery Smooth Muscle Cells. Circulation Research, 2006, 99, 970-978.	4.5	174
45	Calcium Entry and Â-Synuclein Inclusions Elevate Dendritic Mitochondrial Oxidant Stress in Dopaminergic Neurons. Journal of Neuroscience, 2013, 33, 10154-10164.	3.6	174
46	Mitochondrial oxidant stress triggers cell death in simulated ischemia–reperfusion. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1382-1394.	4.1	172
47	Calcium and Parkinson's disease. Biochemical and Biophysical Research Communications, 2017, 483, 1013-1019.	2.1	164
48	Cellular Respiration during Hypoxia. Journal of Biological Chemistry, 1997, 272, 18808-18816.	3.4	163
49	Role of Mitochondrial Oxidant Generation in Endothelial Cell Responses to Hypoxia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 566-573.	2.4	158
50	Mitochondria in lung biology and pathology: more than just a powerhouse. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 306, L962-L974.	2.9	158
51	Mitochondrial Electron Transport can Become a Significant Source of Oxidative Injury in Cardiomyocytes. Journal of Molecular and Cellular Cardiology, 1997, 29, 2441-2450.	1.9	153
52	Redox signaling during hypoxia in mammalian cells. Redox Biology, 2017, 13, 228-234.	9.0	152
53	Hypoxic pulmonary vasoconstriction: redox events in oxygen sensing. Journal of Applied Physiology, 2005, 98, 404-414.	2.5	149
54	Redox regulation of p53 during hypoxia. Oncogene, 2000, 19, 3840-3848.	5.9	148

#	Article	IF	CITATIONS
55	AMP-activated protein kinase regulates CO2-induced alveolar epithelial dysfunction in rats and human cells by promoting Na,K-ATPase endocytosis. Journal of Clinical Investigation, 2008, 118, 752-62.	8.2	146
56	Hibernation during Hypoxia in Cardiomyocytes. Journal of Biological Chemistry, 1998, 273, 3320-3326.	3.4	143
57	Mitochondrial Function in Sepsis. Shock, 2016, 45, 271-281.	2.1	142
58	Hyperoxia Increases Phosphodiesterase 5 Expression and Activity in Ovine Fetal Pulmonary Artery Smooth Muscle Cells. Circulation Research, 2008, 102, 226-233.	4.5	141
59	O 2 sensing, mitochondria and ROS signaling: The fog is lifting. Molecular Aspects of Medicine, 2016, 47-48, 76-89.	6.4	140
60	Mitochondrial oxidant stress in locus coeruleus is regulated by activity and nitric oxide synthase. Nature Neuroscience, 2014, 17, 832-840.	14.8	139
61	Mitochondrial requirement for endothelial responses to cyclic strain: implications for mechanotransduction. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 287, L486-L496.	2.9	137
62	Superoxide Generated at Mitochondrial Complex III Triggers Acute Responses to Hypoxia in the Pulmonary Circulation. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 424-432.	5.6	137
63	Baicalein attenuates oxidant stress in cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H999-H1006.	3.2	134
64	Dynamin–Related Protein 1 Deficiency Improves Mitochondrial Fitness and Protects against Progression of Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2016, 27, 2733-2747.	6.1	130
65	Endothelial permeability and IL-6 production during hypoxia: role of ROS in signal transduction. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 277, L1057-L1065.	2.9	129
66	Endothelial responses to mechanical stress: Where is the mechanosensor?. Critical Care Medicine, 2002, 30, S198-S206.	0.9	125
67	Molecular Oxygen Modulates Cytochrome c Oxidase Function. Journal of Biological Chemistry, 1996, 271, 18672-18677.	3.4	123
68	Extract from Scutellaria baicalensis Georgi Attenuates Oxidant Stress in Cardiomyocytes. Journal of Molecular and Cellular Cardiology, 1999, 31, 1885-1895.	1.9	122
69	Interdependence of HIF-1α and TGF-β/Smad3 signaling in normoxic and hypoxic renal epithelial cell collagen expression. American Journal of Physiology - Renal Physiology, 2011, 300, F898-F905.	2.7	122
70	Oxidant Stress during Simulated Ischemia Primes Cardiomyocytes for Cell Death during Reperfusion. Journal of Biological Chemistry, 2007, 282, 19133-19143.	3.4	119
71	Mitochondrial Complex III-generated Oxidants Activate ASK1 and JNK to Induce Alveolar Epithelial Cell Death following Exposure to Particulate Matter Air Pollution. Journal of Biological Chemistry, 2009, 284, 2176-2186.	3.4	117
72	The â€~mitoflash' probe cpYFP does not respond to superoxide. Nature, 2014, 514, E12-E14.	27.8	109

#	Article	IF	CITATIONS
73	Systemic isradipine treatment diminishes calcium-dependent mitochondrial oxidant stress. Journal of Clinical Investigation, 2018, 128, 2266-2280.	8.2	106
74	Terpestacin Inhibits Tumor Angiogenesis by Targeting UQCRB of Mitochondrial Complex III and Suppressing Hypoxia-induced Reactive Oxygen Species Production and Cellular Oxygen Sensing. Journal of Biological Chemistry, 2010, 285, 11584-11595.	3.4	101
75	Physiological Phenotype and Vulnerability in Parkinson's Disease. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a009290-a009290.	6.2	97
76	Dopamine metabolism by a monoamine oxidase mitochondrial shuttle activates the electron transport chain. Nature Neuroscience, 2020, 23, 15-20.	14.8	97
77	Synthesis enables identification of the cellular target of leucascandrolide A and neopeltolide. Nature Chemical Biology, 2008, 4, 418-424.	8.0	93
78	Epithelial Cell Death Is an Important Contributor to Oxidant-mediated Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 1043-1054.	5.6	93
79	Effects of EndotoxinIn Vivoon Endothelial and Smooth-Muscle Function in Rabbit and Rat Aorta. The American Review of Respiratory Disease, 1993, 148, 1638-1645.	2.9	87
80	Oxygen Delivery and Uptake by Peripheral Tissues: Physiology and Pathophysiology. Critical Care Clinics, 1989, 5, 255-269.	2.6	86
81	Mitochondria-targeted Ogg1 and Aconitase-2 Prevent Oxidant-induced Mitochondrial DNA Damage in Alveolar Epithelial Cells. Journal of Biological Chemistry, 2014, 289, 6165-6176.	3.4	85
82	EndotoxinIn VivoImpairs Endothelium-dependent Relaxation of Canine ArteriesIn Vitro. The American Review of Respiratory Disease, 1990, 142, 1263-1267.	2.9	83
83	ROSâ€Mediated PARP Activity Undermines Mitochondrial Function After Permeability Transition Pore Opening During Myocardial Ischemia–Reperfusion. Journal of the American Heart Association, 2013, 2, e000159.	3.7	83
84	Role of reactive oxygen species in acetylcholine-induced preconditioning in cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H2504-H2509.	3.2	79
85	Mitochondrial Complex III is Required for Hypoxia-Induced ROS Production and Gene Transcription in Yeast. Antioxidants and Redox Signaling, 2007, 9, 1317-1328.	5.4	78
86	Antioxidant effects of American ginseng berry extract in cardiomyocytes exposed to acute oxidant stress. Biochimica Et Biophysica Acta - General Subjects, 2004, 1670, 165-171.	2.4	77
87	Developmental differences in hyperoxia-induced oxidative stress and cellular responses in the murine lung. Free Radical Biology and Medicine, 2013, 61, 51-60.	2.9	76
88	Sirt3 protects dopaminergic neurons from mitochondrial oxidative stress. Human Molecular Genetics, 2017, 26, 1915-1926.	2.9	76
89	Stretch-induced phosphorylation of focal adhesion kinase in endothelial cells: role of mitochondrial oxidants. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 291, L38-L45.	2.9	75
90	Hypoxia-inducible factor-1 (HIF-1). Critical Care Medicine, 2005, 33, S423-S425.	0.9	73

#	Article	IF	CITATIONS
91	TRAF4 Deficiency Leads to Tracheal Malformation with Resulting Alterations in Air Flow to the Lungs. American Journal of Pathology, 2000, 157, 679-688.	3.8	72
92	Grape seed proanthocyanidin extract attenuates oxidant injury in cardiomyocytes. Pharmacological Research, 2003, 47, 463-469.	7.1	72
93	Mitochondrial oxidant stress increases PDE5 activity in persistent pulmonary hypertension of the newborn. Respiratory Physiology and Neurobiology, 2010, 174, 272-281.	1.6	72
94	Hypoxia Increases ROS Signaling and Cytosolic Ca ²⁺ in Pulmonary Artery Smooth Muscle Cells of Mouse Lungs Slices. Antioxidants and Redox Signaling, 2010, 12, 595-602.	5.4	70
95	Lung Cell Hypoxia: Role of Mitochondrial Reactive Oxygen Species Signaling in Triggering Responses. Proceedings of the American Thoracic Society, 2011, 8, 477-484.	3.5	70
96	Role of mitochondrial hOGG1 and aconitase in oxidant-induced lung epithelial cell apoptosis. Free Radical Biology and Medicine, 2009, 47, 750-759.	2.9	68
97	Hypoxia-induced changes in pulmonary and systemic vascular resistance: Where is the O2 sensor?. Respiratory Physiology and Neurobiology, 2010, 174, 201-211.	1.6	66
98	Hydrogen Peroxide Regulates Extracellular Superoxide Dismutase Activity and Expression in Neonatal Pulmonary Hypertension. Antioxidants and Redox Signaling, 2011, 15, 1497-1506.	5.4	64
99	Distinct Mechanisms of Neurodegeneration Induced by Chronic Complex I Inhibition in Dopaminergic and Non-dopaminergic Cells. Journal of Biological Chemistry, 2004, 279, 51783-51792.	3.4	63
100	SIRT3 Controls Cancer Metabolic Reprogramming by Regulating ROS and HIF. Cancer Cell, 2011, 19, 299-300.	16.8	63
101	O2 sensing in hypoxic pulmonary vasoconstriction: the mitochondrial door re-opens. Respiratory Physiology and Neurobiology, 2002, 132, 81-91.	1.6	62
102	Prolonged Hypoxia Increases ROS Signaling and RhoA Activation in Pulmonary Artery Smooth Muscle and Endothelial Cells. Antioxidants and Redox Signaling, 2010, 12, 603-610.	5.4	61
103	Brief Hyperoxia Increases Mitochondrial Oxidation and Increases Phosphodiesterase 5 Activity in Fetal Pulmonary Artery Smooth Muscle Cells. Antioxidants and Redox Signaling, 2012, 17, 460-470.	5.4	60
104	Real-time inÂvivo mitochondrial redox assessment confirms enhanced mitochondrial reactive oxygen species in diabetic nephropathy. Kidney International, 2017, 92, 1282-1287.	5.2	60
105	Mouse lung development and NOX1 induction during hyperoxia are developmentally regulated and mitochondrial ROS dependent. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L369-L377.	2.9	59
106	Hyperoxiaâ€induced premature senescence requires p53 and pRb, but not mitochondrial matrix ROS. FASEB Journal, 2009, 23, 783-794.	0.5	57
107	Hypoxia-Inducible Factor-1 α Expression Predicts Superior Survival in Patients With Diffuse Large B-Cell Lymphoma Treated With R-CHOP. Journal of Clinical Oncology, 2010, 28, 1017-1024.	1.6	57
108	Increased p22 ^{phox} /Nox4 Expression Is Involved in Remodeling Through Hydrogen Peroxide Signaling in Experimental Persistent Pulmonary Hypertension of the Newborn. Antioxidants and Redox Signaling, 2013, 18, 1765-1776.	5.4	57

#	Article	IF	CITATIONS
109	mRNA-binding protein tristetraprolin is essential for cardiac response to iron deficiency by regulating mitochondrial function. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6291-E6300.	7.1	57
110	Peroxiredoxin-5 targeted to the mitochondrial intermembrane space attenuates hypoxia-induced reactive oxygen species signalling. Biochemical Journal, 2013, 456, 337-346.	3.7	55
111	Oxygen sensing in hypoxic pulmonary vasoconstriction: using new tools to answer an ageâ€old question. Experimental Physiology, 2008, 93, 133-138.	2.0	52
112	Hypoxia-inducible factor-2α and TGF-β signaling interact to promote normoxic glomerular fibrogenesis. American Journal of Physiology - Renal Physiology, 2013, 305, F1323-F1331.	2.7	51
113	Hypoxia, anoxia, and O2 sensing: the search continues. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 283, L918-L921.	2.9	47
114	Asbestos-Induced Pulmonary Fibrosis Is Augmented in 8-Oxoguanine DNA Glycosylase Knockout Mice. American Journal of Respiratory Cell and Molecular Biology, 2015, 52, 25-36.	2.9	47
115	Current Paradigms in Cellular Oxygen Sensing. Advances in Experimental Medicine and Biology, 2003, 543, 57-71.	1.6	45
116	Intermediate filament aggregates cause mitochondrial dysmotility and increase energy demands in giant axonal neuropathy. Human Molecular Genetics, 2016, 25, 2143-2157.	2.9	44
117	Absence of supply dependence of oxygen consumption in patients with septic shock. Journal of Critical Care, 1993, 8, 203-211.	2.2	42
118	Nitric oxide during ischemia attenuates oxidant stress and cell death during ischemia and reperfusion in cardiomyocytes. Free Radical Biology and Medicine, 2007, 43, 590-599.	2.9	42
119	Hypoxia inducible factor-alpha activation in lymphoma and relationship to the thioredoxin family. British Journal of Haematology, 2008, 141, 676-680.	2.5	40
120	Synergistic Effect of Scutellaria baicalensis and Grape Seed Proanthocyanidins on Scavenging Reactive Oxygen Species in Vitro. The American Journal of Chinese Medicine, 2004, 32, 89-95.	3.8	39
121	Grape Seed Proanthocyanidins Induce Pro-Oxidant Toxicity in Cardiomyocytes. Cardiovascular Toxicology, 2003, 3, 331-340.	2.7	32
122	Hypoxic conformance of metabolism in primary rat hepatocytes: A model of hepatic hibernation. Hepatology, 2007, 45, 455-464.	7.3	32
123	Sensors and signals: the role of reactive oxygen species in hypoxic pulmonary vasoconstriction. Journal of Physiology, 2019, 597, 1033-1043.	2.9	30
124	Role of Hypoxia-Inducible Factors in Regulating Right Ventricular Function and Remodeling during Chronic Hypoxia–induced Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 652-664.	2.9	30
125	Physiological hypoxia promotes survival of cultured cortical neurons. European Journal of Neuroscience, 2005, 22, 1319-1326.	2.6	27
126	Limitations of Aerobic Metabolism in Critical illness. Chest, 1984, 85, 453-454.	0.8	26

#	Article	IF	CITATIONS
127	Cyclic stretch stimulates mitochondrial reactive oxygen species and Nox4 signaling in pulmonary artery smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L196-L203.	2.9	26
128	A Tumor Suppressor SIRTainty. Cancer Cell, 2010, 17, 5-6.	16.8	25
129	Sirtuin 3 Deficiency Does Not Augment Hypoxia-Induced Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 885-891.	2.9	25
130	Identification of Fumarate Hydratase Inhibitors with Nutrient-Dependent Cytotoxicity. Journal of the American Chemical Society, 2015, 137, 564-567.	13.7	23
131	Editorial: Straining to understand mechanotransduction in the lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 282, L881-L882.	2.9	21
132	Hypoxia inducible factor signaling and experimental persistent pulmonary hypertension of the newborn. Frontiers in Pharmacology, 2015, 6, 47.	3.5	21
133	Signal transduction of flumazenil-induced preconditioning in myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H1249-H1255.	3.2	20
134	Influence of Gelatin on Bioassayable and Immunoreactive Opsonic Fibronectin. Experimental Biology and Medicine, 1981, 168, 15-23.	2.4	19
135	Cyclic Stretch Induces Inducible Nitric Oxide Synthase and Soluble Guanylate Cyclase in Pulmonary Artery Smooth Muscle Cells. International Journal of Molecular Sciences, 2013, 14, 4334-4348.	4.1	18
136	Snf1-related kinase improves cardiac mitochondrial efficiency and decreases mitochondrial uncoupling. Nature Communications, 2017, 8, 14095.	12.8	18
137	Paradoxical Regulation of Hypoxia Inducible Factor-1α (HIF-1α) by Histone Deacetylase Inhibitor in Diffuse Large B-Cell Lymphoma. PLoS ONE, 2013, 8, e81333.	2.5	18
138	The First Global Screening of Protein Substrates Bearing Protein-Bound 3,4-Dihydroxyphenylalanine in <i>Escherichia coli</i> and Human Mitochondria. Journal of Proteome Research, 2010, 9, 5705-5714.	3.7	15
139	JNK2 up-regulates hypoxia-inducible factors and contributes to hypoxia-induced erythropoiesis and pulmonary hypertension. Journal of Biological Chemistry, 2018, 293, 271-284.	3.4	14
140	Roles of HIF1 and HIF2 in pulmonary hypertension: it all depends on the context. European Respiratory Journal, 2019, 54, 1901929.	6.7	13
141	Systemic oxygen delivery and consumption during acute lung injury in dogs. Journal of Critical Care, 1988, 3, 249-255.	2.2	12
142	Is enough oxygen too much?. Critical Care, 2010, 14, 191.	5.8	11
143	Role for Mitochondrial Reactive Oxygen Species in Hypoxic Pulmonary Vasoconstriction. Novartis Foundation Symposium, 0, , 176-195.	1.1	11
144	Oxygen Supply and Consumption in the Adult Respiratory Distress Syndrome. Clinics in Chest Medicine, 1990, 11, 715-722.	2.1	10

#	Article	IF	CITATIONS
145	Angiotensin II Signaling in the Brain. Circulation Research, 2002, 91, 982-984.	4.5	9
146	Nitric oxide quenches the fire in heart mitochondria. Nature Medicine, 2013, 19, 666-667.	30.7	8
147	Life at the Editorial "COVID Frontline― The American Thoracic Society Journal Family. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 1457-1459.	5.6	8
148	Qian-Kun-Nin, a Chinese herbal medicine formulation, attenuates mitochondrial oxidant stress in cardiomyocytes. Journal of Ethnopharmacology, 2001, 74, 63-68.	4.1	7
149	MicroRNAs and PARP: co-conspirators with ROS in pulmonary hypertension. Focus on "miR-223 reverses experimental pulmonary arterial hypertension― American Journal of Physiology - Cell Physiology, 2015, 309, C361-C362.	4.6	7
150	Peripheral Vascular Responses in Septic Shock. Chest, 1991, 99, 1057-1058.	0.8	6
151	What Keeps a Resting T Cell Alive?. Cold Spring Harbor Symposia on Quantitative Biology, 1999, 64, 383-388.	1.1	5
152	Cellular and Molecular Mechanisms of O2 Sensing. , 2014, , 1-22.		4
153	Mitochondrial Succinate Dehydrogenase in Chronic Obstructive Pulmonary Disease: Is Complex II Too Complex?. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 231-232.	2.9	4
154	The effect of adrenergic agonists on the systemic response to hemorrhage. Journal of Critical Care, 1994, 9, 25-33.	2.2	3
155	Physiological redox signaling in lung, cardiovascular and neural cells: Progress, controversy and potential. Respiratory Physiology and Neurobiology, 2010, 174, 163-164.	1.6	2
156	Update in Pulmonary Vascular Diseases 2013. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 738-743.	5.6	2
157	The Phillip Morris Foundation for a Smoke-Free World. A Cause for Concern. Annals of the American Thoracic Society, 2018, 15, 1269-1272.	3.2	2
158	January 2000!. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 278, L1-L2.	2.9	1
159	BAX OR BAK Mediate Mitochondrial Superoxide Dependent Acute Lung Injury. , 2010, , .		1
160	Rescuing Decrepit Soluble Guanylate Cyclase: A Therapy for Sickle Cell Disease?. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 553-554.	2.9	1
161	Happy 30th Anniversary to the Red Journal!. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 1-2.	2.9	1
162	PX-478, a Novel Small Molecule Inhibitor of Hypoxia Inducible Factor-1 (HIF-1) Downregulates HIF and Induces Cytotoxicity in Diffuse Large B Cell Lymphoma Cells Blood, 2009, 114, 2713-2713.	1.4	1

#	Article	IF	CITATIONS
163	Oxygen delivery and consumption relationships: Current perspectives. Reanimation Urgences, 1996, 5, 186-190.	0.1	0
164	Cell Metabolism and Tissue Hypoxia. , 2006, , 41-50.		0
165	Determinants of Selective Vulnerability of Dopamine Neurons in Parkinson's Disease. Handbook of Behavioral Neuroscience, 2016, 24, 821-837.	0.7	0
166	A New Beginning for theRed Journal. American Journal of Respiratory Cell and Molecular Biology, 2016, 55, v-vi.	2.9	0
167	Antiapoptotic effect of Vitis vinifera (grape seed) proanthocyanidins in cardiomyocytes. Focus on Alternative and Complementary Therapies, 0, 9, 49-49.	0.1	0
168	Hypoxia and Hyperoxia. , 2012, , 91-109.		0
169	Life on the Edge: Determinants of Selective Neuronal Vulnerability in Parkinson's Disease. , 2016, , 141-173.		0
170	Loss of Hypoxia Inducible Factorâ€1α Increases Right Ventricular Hypertrophy in Chronic Hypoxiaâ€Induced Pulmonary Hypertension. FASEB Journal, 2018, 32, 892.16.	0.5	0
171	Update in Sleep 2021. American Journal of Respiratory and Critical Care Medicine, 2022, , .	5.6	0