Carlos Amador-Bedolla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2198380/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of thickness of spin-coated P3HT thin films, over their optical and electronic properties. Journal of Solid State Electrochemistry, 2022, 26, 649-661.	2.5	3
2	Charge-transfer electronic states in organic solar cells: a TDDFT study. Physical Chemistry Chemical Physics, 2021, 23, 16806-16815.	2.8	7
3	Photoisomerization and its effect in the opto-electronic properties of organic photovoltaic materials: A quantum chemistry study. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 409, 113155.	3.9	5
4	Saliva is a reliable and accessible source for the detection of SARS-CoV-2. International Journal of Infectious Diseases, 2021, 105, 83-90.	3.3	47
5	Electronic structure data at ground and excited state of the structural and opto-electronic properties of organic photovoltaic materials. Data in Brief, 2021, 35, 106952.	1.0	1
6	Exciton dissociation in correlated molecular photocells. Journal of Physics and Chemistry of Solids, 2021, 152, 109966.	4.0	1
7	Isomerization reactions with [Ru(Bpy)3]2+ photocatalyst. A DFT study of the factors influencing the energy transfer mechanism supported by experimental data. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 414, 113224.	3.9	2
8	Concentration Effects on the First Reduction Process of Methyl Viologens and Diquat Redox Flow Battery Electrolytes. ACS Applied Energy Materials, 2021, 4, 6624-6634.	5.1	13
9	Kinetic Properties of Aqueous Organic Redox Flow Battery Anolytes Using the Marcus–Hush Theory. ACS Applied Energy Materials, 2020, 3, 8833-8841.	5.1	12
10	Materials Acceleration Platforms: On the way to autonomous experimentation. Current Opinion in Green and Sustainable Chemistry, 2020, 25, 100370.	5.9	67
11	On the role of driving force in molecular photocells. Physica B: Condensed Matter, 2020, 583, 412052.	2.7	3
12	Experimental and Theoretical Exploration of Aryl Substituent Effects on the Electronic Properties of Asymmetric 4,7-Di(thiophene-2-yl)-benzo[c][2,1,5]thiadiazole Compounds. Polycyclic Aromatic Compounds, 2020, , 1-16.	2.6	2
13	Assessing electronic properties of desymmetrized heterocyclic patterns: towards tuning small molecules for photovoltaic applications. MRS Advances, 2020, 5, 3171-3184.	0.9	0
14	Theoretical exploration of 2,2′-bipyridines as electro-active compounds in flow batteries. Physical Chemistry Chemical Physics, 2019, 21, 15823-15832.	2.8	8
15	Atomistic simulations of bulk heterojunctions to evaluate the structural and packing properties of new predicted donors in OPVs. Physical Chemistry Chemical Physics, 2019, 21, 20315-20326.	2.8	6
16	Quasiperiodic Branches in the Thermoelectricity of Nanowires. Journal of Electronic Materials, 2019, 48, 5099-5110.	2.2	2
17	Density (de)localization and statistical correlation in the Van der Waals interactions and the chemical bond between two hydrogens. Physica A: Statistical Mechanics and Its Applications, 2019, 527, 121324.	2.6	2
18	Parameterization of prototype organic small molecules suitable for OPVs and molecular dynamics simulations: the BTT and BPT cases. Journal of Molecular Modeling, 2019, 25, 110.	1.8	1

#	Article	IF	CITATIONS
19	Reassessment of the Four-Point Approach to the Electron-Transfer Marcus–Hush Theory. ACS Omega, 2018, 3, 2130-2140.	3.5	21
20	Accelerating the discovery of materials for clean energy in the era of smart automation. Nature Reviews Materials, 2018, 3, 5-20.	48.7	489
21	Ruthenium tris bipyridine derivatives and their photocatalytic activity in [4 + 2] cycloadditions. An experimental and DFT study. Catalysis Today, 2018, 310, 2-10.	4.4	10
22	Electronic structure and nonlinear optical properties of organic photovoltaic systems with potential applications on solar cell devices: a DFT approach. Theoretical Chemistry Accounts, 2018, 137, 1.	1.4	17
23	A Synergetic Experimental and Computational Approach Towards a Better Comprehension of Redox		

CARLOS AMADOR-BEDOLLA

#	Article	IF	CITATIONS
37	Promotional effect of Co or Ni impurity in the catalytic activity of MoS2: An electronic structure study. International Journal of Quantum Chemistry, 2000, 80, 406-415.	2.0	5
38	Promotional effect of Co or Ni impurity in the catalytic activity of MoS2: An electronic structure study. International Journal of Quantum Chemistry, 2000, 80, 406-415.	2.0	1
39	An introduction to the BFS method and its use to model binary NiAl alloys. Journal of Computer-Aided Materials Design, 1999, 6, 1-32.	0.7	29
40	BFS simulation and experimental analysis of the effect of Ti additions on the structure of NiAl. Journal of Computer-Aided Materials Design, 1999, 6, 33-68.	0.7	9
41	Zero temperature analysis of the defect structure of B2 FeAl alloys. Scripta Materialia, 1997, 36, 813-819.	5.2	16
42	Modelling of the defect structure of \hat{l}^2 -NiAl. Scripta Metallurgica Et Materialia, 1995, 33, 1907-1913.	1.0	33
43	Theoretical and Experimental Study of Relaxations inAl3TiandAl3ZrOrdered Phases. Physical Review Letters, 1995, 74, 4955-4958.	7.8	51
44	Formation energy of disordered alloys from the energetics of ordered compounds. Physical Review B, 1994, 49, 956-960.	3.2	23
45	Internal strain effects on the phase diagram of Ni-Pt alloys. Physical Review B, 1993, 47, 15276-15279.	3.2	29
46	"Wrong" Bond Interactions at Inversion Domain Boundaries in GaAs. Physical Review Letters, 1992, 68, 1363-1366.	7.8	22
47	Application of generalized gradient-corrected density functionals to iron. Physical Review B, 1992, 46, 1870-1873.	3.2	72
48	Band structures of Ni3Pt and NiPt3. Zeitschrift Für Physik B-Condensed Matter, 1990, 80, 237-239.	1.1	22
49	Moment formation in magnetic rare earth metal alloys. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1985, 130, 37-40.	0.9	3
50	Chemical bonding and structural relaxation of amorphous ZrxCu1â^'x. Journal of Non-Crystalline Solids, 1985, 75, 385-390.	3.1	1
51	Theoretical analysis of the ?+ Knight shift in Cd and Zn. Hyperfine Interactions, 1981, 8, 483-486.	0.5	3