Eleanor M Waxman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/21981/publications.pdf

Version: 2024-02-01

27 papers 966 citations

567281 15 h-index 17 g-index

28 all docs 28 docs citations

28 times ranked

1309 citing authors

#	Article	IF	CITATIONS
1	Remote sensing using open-path dual-comb spectroscopy. , 2021, , 27-93.		5
2	Precise multispecies agricultural gas flux determined using broadband open-path dual-comb spectroscopy. Science Advances, 2021, 7, .	10.3	32
3	Comparison of Livestock Emissions Measurements Using Open-Path Dual-Comb Spectroscopy and Closed-Path Cavity Ring-Down Spectroscopy. , 2020, , .		O
4	Micrometeorological flux measurements using spatially- scanned open-path dual-comb spectroscopy. , 2020, , .		1
5	Beef cattle feedlot emissions measured using open-path dual-comb spectroscopy. , 2020, , .		O
6	Real-time liquid-phase organic reaction monitoring with mid-infrared attenuated total reflectance dual frequency comb spectroscopy. Journal of Molecular Spectroscopy, 2019, 356, 39-45.	1.2	11
7	Estimating vehicle carbon dioxide emissions from Boulder, Colorado, using horizontal path-integrated column measurements. Atmospheric Chemistry and Physics, 2019, 19, 4177-4192.	4.9	25
8	Broadband coherent cavity-enhanced dual-comb spectroscopy. Optica, 2019, 6, 28.	9.3	38
9	Mid-infrared dual-comb spectroscopy of volatile organic compounds across long open-air paths. Optica, 2019, 6, 165.	9.3	67
10	Open Path MIR DCS for Chemical Detection. , 2018, , .		0
11	Open-Path Dual Frequency Comb Spectroscopy Applied to Source Quantification., 2018,,.		O
12	Potential of Aerosol Liquid Water to Facilitate Organic Aerosol Formation: Assessing Knowledge Gaps about Precursors and Partitioning. Environmental Science & Echnology, 2017, 51, 3327-3335.	10.0	55
13	Can COSMOTherm Predict a Salting in Effect?. Journal of Physical Chemistry A, 2017, 121, 6288-6295.	2.5	17
14	Gas-phase broadband spectroscopy using active sources: progress, status, and applications [Invited]. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 104.	2.1	105
15	Open-path dual-comb spectroscopy to an airborne retroreflector. Optica, 2017, 4, 724.	9.3	81
16	Intercomparison of open-path trace gas measurements with two dual-frequency-comb spectrometers. Atmospheric Measurement Techniques, 2017, 10, 3295-3311.	3.1	57
17	Intercomparison of Open-Path Trace Gas Measurements with Two Dual Frequency Comb Spectrometers., 2017, 10, 3295-3311.		11
18	Dual Frequency Comb Spectroscopy for Trace Gas Monitoring Over Open-Air Paths. , 2017, , .		0

#	Article	IF	CITATION
19	Accurate frequency referencing for fieldable dual-comb spectroscopy. Optics Express, 2016, 24, 30495.	3.4	77
20	Computational Study of the Effect of Glyoxal–Sulfate Clustering on the Henry's Law Coefficient of Glyoxal. Journal of Physical Chemistry A, 2015, 119, 4509-4514.	2.5	35
21	Measurements of the Absorption Cross Section of ¹³ CHO ¹³ CHO at Visible Wavelengths and Application to DOAS Retrievals. Journal of Physical Chemistry A, 2015, 119, 4651-4657.	2.5	0
22	Glyoxal and Methylglyoxal Setschenow Salting Constants in Sulfate, Nitrate, and Chloride Solutions: Measurements and Gibbs Energies. Environmental Science & Environmental Science & 11500-11508.	10.0	64
23	Novel Pathways to Form Secondary Organic Aerosols: Glyoxal SOA in WRF/Chem. Springer Proceedings in Complexity, 2014, , 149-154.	0.3	0
24	Effective Henry's Law Partitioning and the Salting Constant of Glyoxal in Aerosols Containing Sulfate. Environmental Science & Environmental Scienc	10.0	115
25	Secondary organic aerosol formation from semi―and intermediateâ€volatility organic compounds and glyoxal: Relevance of O/C as a tracer for aqueous multiphase chemistry. Geophysical Research Letters, 2013, 40, 978-982.	4.0	69
26	Imaging and Thermal Studies of Wheat Gluten/Poly(vinyl alcohol) and Wheat Gluten/Thiolated Poly(vinyl alcohol) Blends. Biomacromolecules, 2008, 9, 568-573.	5.4	22
27	Wheat Glutenâ^'Thiolated Poly(vinyl alcohol) Blends with Improved Mechanical Properties. Biomacromolecules, 2006, 7, 2837-2844.	5 . 4	79