Nicolas Loeuille

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2197605/publications.pdf

Version: 2024-02-01

279798 197818 2,896 51 23 49 citations h-index g-index papers 112 112 112 4139 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The ecological and evolutionary implications of merging different types of networks. Ecology Letters, 2011, 14, 1170-1181.	6.4	332
2	Evolutionary emergence of size-structured food webs. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5761-5766.	7.1	297
3	Eco-evolutionary responses of biodiversity to climate change. Nature Climate Change, 2012, 2, 747-751.	18.8	262
4	The evolutionary ecology of metacommunities. Trends in Ecology and Evolution, 2008, 23, 311-317.	8.7	253
5	Impacts of Invasive Species on Food Webs. Advances in Ecological Research, 2017, , 1-60.	2.7	222
6	Ecosystem tipping points in an evolving world. Nature Ecology and Evolution, 2019, 3, 355-362.	7.8	203
7	Plant Preference for Ammonium versus Nitrate: A Neglected Determinant of Ecosystem Functioning?. American Naturalist, 2012, 180, 60-69.	2.1	155
8	Evolution in Metacommunities: On the Relative Importance of Species Sorting and Monopolization in Structuring Communities. American Naturalist, 2008, 171, 788-799.	2.1	96
9	Unifying sources and sinks in ecology andÂ <scp>E</scp> arth sciences. Biological Reviews, 2013, 88, 365-379.	10.4	85
10	Emergence and maintenance of biodiversity in an evolutionary food-web model. Theoretical Ecology, 2011, 4, 467-478.	1.0	73
11	Evolution of body size in food webs: does the energetic equivalence rule hold?. Ecology Letters, 2006, 9, 171-178.	6.4	67
12	Influence of evolution on the stability of ecological communities. Ecology Letters, 2010, 13, 1536-1545.	6.4	61
13	Consequences of adaptive foraging in diverse communities. Functional Ecology, 2010, 24, 18-27.	3.6	57
14	Functional trait diversity across trophic levels determines herbivore impact on plant community biomass. Ecology Letters, 2015, 18, 1346-1355.	6.4	56
15	Eco-Evolutionary Dynamics of Agricultural Networks. Advances in Ecological Research, 2013, 49, 339-435.	2.7	54
16	Nutrient enrichment and food chains: can evolution buffer top-down control?. Theoretical Population Biology, 2004, 65, 285-298.	1.1	50
17	Networking Agroecology. Advances in Ecological Research, 2013, , 1-67.	2.7	50
18	Consequences of Plant-Herbivore Coevolution on the Dynamics and Functioning of Ecosystems. Journal of Theoretical Biology, 2002, 217, 369-381.	1.7	42

#	Article	IF	CITATIONS
19	Ecological consequences of evolution in plant defenses in a metacommunity. Theoretical Population Biology, 2008, 74, 34-45.	1.1	38
20	Facilitation―vs. competitionâ€driven succession: the key role of resourceâ€ratio. Ecology Letters, 2018, 21, 1010-1021.	6.4	33
21	Balancing yield with resilience and conservation objectives in harvested predator–prey communities. Oikos, 2017, 126, 1780-1789.	2.7	32
22	Species sorting and patch dynamics in harlequin metacommunities affect the relative importance of environment and space. Ecology, 2015, 96, 3227-3233.	3.2	29
23	Dynamics of coupled mutualistic and antagonistic interactions, and their implications for ecosystem management. Journal of Theoretical Biology, 2014, 346, 67-74.	1.7	27
24	An individualâ€based model for the ecoâ€evolutionary emergence of bipartite interaction networks. Ecology Letters, 2020, 23, 1623-1634.	6.4	22
25	Stochastic eco-evolutionary model of a prey-predator community. Journal of Mathematical Biology, 2016, 72, 573-622.	1.9	21
26	Evolution of nutrient acquisition: when adaptation fills the gap between contrasting ecological theories. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 449-457.	2.6	17
27	Nutrient enrichment and local competition influence the evolution of plant mineralization strategy: a modelling approach. Journal of Ecology, 2014, 102, 357-366.	4.0	16
28	Relative impacts of environmental variation and evolutionary history on the nestedness and modularity of tree–herbivore networks. Ecology and Evolution, 2015, 5, 2898-2915.	1.9	15
29	14 Questions for Invasion in Ecological Networks. Advances in Ecological Research, 2017, , 293-340.	2.7	15
30	Effects of local negative feedbacks on the evolution of species within metacommunities. Ecology Letters, 2014, 17, 563-573.	6.4	14
31	Impact of temperature shifts on the joint evolution of seed dormancy and size. Ecology and Evolution, 2017, 7, 26-37.	1.9	14
32	Strategies of offspring investment and dispersal in a spatially structured environment: a theoretical study using ants. BMC Ecology, 2016, 16, 4.	3.0	13
33	Collapse and rescue of evolutionary food webs under global warming. Journal of Animal Ecology, 2021, 90, 710-722.	2.8	13
34	Metastasis and the evolution of dispersal. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20192186.	2.6	12
35	Eco-evolutionary dynamics in a disturbed world: implications for the maintenance of ecological networks. F1000Research, 2019, 8, 97.	1.6	12
36	Quantifying the dynamics of marine invertebrate metacommunities: What processes can maintain high diversity with low densities in the Mediterranean Sea?. Ecological Modelling, 2009, 220, 3021-3032.	2.5	11

#	Article	IF	Citations
37	Chapter 12 Emergence of complex food web structure in community evolution models. , 2009, , 163-178.		11
38	Evolution of nutrient acquisition: when space matters. Functional Ecology, 2016, 30, 283-294.	3.6	10
39	Meeting Yield and Conservation Objectives by Harvesting Both Juveniles and Adults. American Naturalist, 2019, 193, 373-390.	2.1	10
40	Eco-Evolutionary Dynamics of Plant–Insect Communities Facing Disturbances. Advances in Ecological Research, 2015, , 91-114.	2.7	8
41	Parasitism effects on coexistence and stability within simple trophic modules. Journal of Theoretical Biology, 2018, 458, 68-77.	1.7	8
42	Sizeâ€dependent ecoâ€evolutionary feedbacks in harvested systems. Oikos, 2021, 130, 1636-1649.	2.7	8
43	Eco-evolutionary dynamics further weakens mutualistic interaction and coexistence under population decline. Evolutionary Ecology, 2022, 36, 373-387.	1.2	7
44	Evolutionary response of plant interaction traits to nutrient enrichment modifies the assembly and structure of antagonisticâ€mutualistic communities. Journal of Ecology, 2016, 104, 193-205.	4.0	6
45	Simulated evolution assembles more realistic food webs with more functionally similar species than invasion. Scientific Reports, 2019, 9, 18242.	3. 3	6
46	The manager dilemma: Optimal management of an ecosystem service in heterogeneous exploited landscapes. Ecological Modelling, 2015, 301, 78-89.	2.5	5
47	From antagonistic larvae to mutualistic adults: coevolution of diet niches within life cycles. Oikos, 2019, 128, 392-404.	2.7	5
48	Multidimensionality of plant defenses and herbivore niches: Implications for eco-evolutionary dynamics. Journal of Theoretical Biology, 2018, 445, 110-119.	1.7	4
49	From apparent competition to facilitation: Impacts of consumer niche construction on the coexistence and stability of consumerâ€resource communities. Functional Ecology, 2019, 33, 1746-1757.	3.6	4
50	Stable coexistence in plant-pollinator-herbivore communities requires balanced mutualistic vs antagonistic interactions. Ecological Modelling, 2022, 465, 109857.	2.5	3
51	Effects of plant evolution on nutrient cycling couple aboveground and belowground processes. Theoretical Ecology, 2017, 10, 117-127.	1.0	1