Kay Ka-Wai Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2197426/publications.pdf Version: 2024-02-01

ΚΛΥΚΛ-\λ/ΛΙΙΙ

#	Article	IF	CITATIONS
1	Adult IDH wild-type lower-grade gliomas should be further stratified. Neuro-Oncology, 2017, 19, 1327-1337.	1.2	177
2	TERT promoter mutations contribute to subset prognostication of lower-grade gliomas. Modern Pathology, 2015, 28, 177-186.	5.5	107
3	IDH mutant lower grade (WHO Grades II/III) astrocytomas can be stratified for risk by CDKN2A, CDK4 and PDGFRA copy number alterations. Brain Pathology, 2020, 30, 541-553.	4.1	73
4	<scp>MiR</scp> â€383 is Downregulated in Medulloblastoma and Targets Peroxiredoxin 3 (<scp>PRDX3</scp>). Brain Pathology, 2013, 23, 413-425.	4.1	71
5	Loss of CIC and FUBP1 expressions are potential markers of shorter time to recurrence in oligodendroglial tumors. Modern Pathology, 2014, 27, 332-342.	5.5	45
6	Biomarker-based prognostic stratification of young adult glioblastoma. Oncotarget, 2016, 7, 5030-5041.	1.8	45
7	Combination genetic signature stratifies lower-grade gliomas better than histological grade. Oncotarget, 2015, 6, 20885-20901.	1.8	42
8	<scp>MIR</scp> â€137 Suppresses Growth and Invasion, is Downregulated in Oligodendroglial Tumors and Targets <scp>CSE1L</scp> . Brain Pathology, 2013, 23, 426-439.	4.1	39
9	<scp>miR</scp> â€106b is overexpressed in medulloblastomas and interacts directly with <scp>PTEN</scp> . Neuropathology and Applied Neurobiology, 2015, 41, 145-164.	3.2	37
10	Pediatric low-grade gliomas can be molecularly stratified for risk. Acta Neuropathologica, 2018, 136, 641-655.	7.7	36
11	Radiomic Features From Multi-Parameter MRI Combined With Clinical Parameters Predict Molecular Subgroups in Patients With Medulloblastoma. Frontiers in Oncology, 2020, 10, 558162.	2.8	34
12	Clinical and mutational profiles of adult medulloblastoma groups. Acta Neuropathologica Communications, 2020, 8, 191.	5.2	30
13	The kinesin KIF14 is overexpressed in medulloblastoma and downregulation of KIF14 suppressed tumor proliferation and induced apoptosis. Laboratory Investigation, 2017, 97, 946-961.	3.7	24
14	Medulloblastoma in China: Clinicopathologic Analyses of SHH, WNT, and Non-SHH/WNT Molecular Subgroups Reveal Different Therapeutic Responses to Adjuvant Chemotherapy. PLoS ONE, 2014, 9, e99490.	2.5	24
15	Incremental prognostic value and underlying biological pathways of radiomics patterns in medulloblastoma. EBioMedicine, 2020, 61, 103093.	6.1	23
16	Not all 1p/19q non-codeleted oligodendroglial tumors are astrocytic. Oncotarget, 2016, 7, 64615-64630.	1.8	22
17	Identification of subsets of IDH-mutant glioblastomas with distinct epigenetic and copy number alterations and stratified clinical risks. Neuro-Oncology Advances, 2019, 1, vdz015.	0.7	22
18	Molecular landscape of IDH-mutant primary astrocytoma Grade IV/glioblastomas. Modern Pathology, 2021, 34, 1245-1260.	5.5	21

Kay Ka-Wai Li

#	Article	IF	CITATIONS
19	Dual degradation signals destruct GLI1: AMPK inhibits GLI1 through β-TrCP-mediated proteasome degradation. Oncotarget, 2017, 8, 49869-49881.	1.8	20
20	Signaling pathway and molecular subgroups of medulloblastoma. International Journal of Clinical and Experimental Pathology, 2013, 6, 1211-22.	0.5	18
21	CRMP1 Inhibits Proliferation of Medulloblastoma and Is Regulated by HMGA1. PLoS ONE, 2015, 10, e0127910.	2.5	13
22	Wholeâ€exome sequencing revealed mutational profiles of giant cell glioblastomas. Brain Pathology, 2019, 29, 782-792.	4.1	11
23	Clinicopathological analysis of UHRF1 expression in medulloblastoma tissues and its regulation on tumor cell proliferation. Medical Oncology, 2016, 33, 99.	2.5	10
24	Molecular subgrouping of medulloblastoma based on few-shot learning of multitasking using conventional MR images: a retrospective multicenter study. Neuro-Oncology Advances, 2020, 2, vdaa079.	0.7	5
25	Molecular landscape of pediatric type IDH wildtype, H3 wildtype hemispheric glioblastomas. Laboratory Investigation, 2022, 102, 731-740.	3.7	5
26	Combinations of Single-Gene Biomarkers Can Precisely Stratify 1,028 Adult Gliomas for Prognostication. Frontiers in Oncology, 2022, 12, 839302.	2.8	3
27	Oligodendrogliomas in pediatric and teenage patients only rarely exhibit molecular markers and patients have excellent survivals. Journal of Neuro-Oncology, 2018, 139, 307-322.	2.9	2
28	Lowâ€grade BRAF V600E mutant oligodendrogliomaâ€like tumors of children may show EGFR and MET amplification. Brain Pathology, 2021, 31, 211-214.	4.1	2
29	Expanding the clinical and molecular spectrum of pituitary blastoma. Acta Neuropathologica, 2022, 143, 415-417.	7.7	2
30	Mismatch repair proteins PMS2 and MLH1 can further refine molecular stratification of IDH-mutant lower grade astrocytomas. Clinical Neurology and Neurosurgery, 2021, 208, 106882.	1.4	1
31	An Unusual Combination of Mirror-Image Dextrocardia with Familial Medulloblastoma: Is There a Histogenetic Relationship?. World Neurosurgery, 2017, 107, 860-867.	1.3	0
32	MEDU-05. PROGNOSTIC IMPLICATION OF TERT PROMOTER MUTATION AND TP53 NUCLEAR STAINING IN ADULT MEDULLOBLASTOMA. Neuro-Oncology, 2019, 21, ii104-ii104.	1.2	0
33	Molecular landscape of IDHâ€wildâ€ŧype, H3â€wildâ€ŧype glioblastomas of adolescents and young adults. Neuropathology and Applied Neurobiology, 2022, 48, .	3.2	0
34	RARE-06. Expanding the clinical and molecular spectrum of pituitary blastoma. Neuro-Oncology, 2022, 24, i10-i10.	1.2	0