
Elzbieta Pach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2197002/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental and theoretical investigation of the electronic structure of Cu2O and CuO thin films on Cu(110) using x-ray photoelectron and absorption spectroscopy. Journal of Chemical Physics, 2013, 138, 024704.	3.0	219
2	Size-Dependent Dissociation of Carbon Monoxide on Cobalt Nanoparticles. Journal of the American Chemical Society, 2013, 135, 2273-2278.	13.7	195
3	The interaction of carbon nanotubes with an inÂvitro blood-brain barrier model and mouse brain inÂvivo. Biomaterials, 2015, 53, 437-452.	11.4	178
4	Revealing Correlation of Valence State with Nanoporous Structure in Cobalt Catalyst Nanoparticles by <i>In Situ</i> Environmental TEM. ACS Nano, 2012, 6, 4241-4247.	14.6	84
5	Dealloying of Cobalt from CuCo Nanoparticles under Syngas Exposure. Journal of Physical Chemistry C, 2013, 117, 6259-6266.	3.1	74
6	Gadolinium-functionalised multi-walled carbon nanotubes as a T 1 contrast agent for MRI cell labelling and tracking. Carbon, 2016, 97, 126-133.	10.3	50
7	Surface charged species and electrochemistry of ferroelectric thin films. Nanoscale, 2019, 11, 17920-17930.	5.6	48
8	Water adsorption, dissociation and oxidation on SrTiO ₃ and ferroelectric surfaces revealed by ambient pressure X-ray photoelectron spectroscopy. Physical Chemistry Chemical Physics, 2019, 21, 4920-4930.	2.8	43
9	Carbon nanotubes allow capture of krypton, barium and lead for multichannel biological X-ray fluorescence imaging. Nature Communications, 2016, 7, 13118.	12.8	39
10	Neutron Activated ¹⁵³ Sm Sealed in Carbon Nanocapsules for <i>in Vivo</i> Imaging and Tumor Radiotherapy. ACS Nano, 2020, 14, 129-141.	14.6	37
11	Comparative study of shortening and cutting strategies of single-walled and multi-walled carbon nanotubes assessed byAscanning electron microscopy. Carbon, 2018, 139, 922-932.	10.3	34
12	Covalent Functionalization of Multiâ€walled Carbon Nanotubes with a Gadolinium Chelate for Efficient <i>T</i> ₁ â€Weighted Magnetic Resonance Imaging. Advanced Functional Materials, 2014, 24, 7173-7186.	14.9	31
13	Design of antibody-functionalized carbon nanotubes filled with radioactivable metals towards a targeted anticancer therapy. Nanoscale, 2016, 8, 12626-12638.	5.6	28
14	Pores Dominate Ice Nucleation on Feldspars. Journal of Physical Chemistry C, 2019, 123, 20998-21004.	3.1	27
15	A reaction cell with sample laser heating for <i>in situ</i> soft X-ray absorption spectroscopy studies under environmental conditions. Journal of Synchrotron Radiation, 2013, 20, 504-508.	2.4	23
16	Encapsulation of two-dimensional materials inside carbon nanotubes: Towards an enhanced synthesis of single-layered metal halides. Carbon, 2017, 123, 129-134.	10.3	21
17	Neutron-irradiated antibody-functionalised carbon nanocapsules for targeted cancer radiotherapy. Carbon, 2020, 162, 410-422.	10.3	18
18	Filling Single-Walled Carbon Nanotubes with Lutetium Chloride: A Sustainable Production of Nanocapsules Free of Nonencapsulated Material. ACS Sustainable Chemistry and Engineering, 2017, 5, 2501-2508.	6.7	17

Elzbieta Pach

#	Article	IF	CITATIONS
19	Inductively coupled remote plasma-enhanced chemical vapor deposition (rPE-CVD) as a versatile route for the deposition of graphene micro- and nanostructures. Carbon, 2017, 117, 331-342.	10.3	17
20	Non-cytotoxic carbon nanocapsules synthesized via one-pot filling and end-closing of multi-walled carbon nanotubes. Carbon, 2019, 141, 782-793.	10.3	16
21	Synthesis of dry SmCl3 from Sm2O3 revisited. Implications for the encapsulation of samarium compounds into carbon nanotubes. Polyhedron, 2016, 116, 116-121.	2.2	13
22	Quantitative monitoring of the removal of non-encapsulated material external to filled carbon nanotube samples. Physical Chemistry Chemical Physics, 2015, 17, 31662-31669.	2.8	12
23	Effect of Steamâ€Treatment Time on the Length and Structure of Singleâ€Walled and Doubleâ€Walled Carbon Nanotubes. ChemNanoMat, 2016, 2, 108-116.	2.8	11
24	Evaluation of the immunological profile of antibody-functionalized metal-filled single-walled carbon nanocapsules for targeted radiotherapy. Scientific Reports, 2017, 7, 42605.	3.3	11
25	Production of Water-Soluble Few-Layer Graphene Mesosheets by Dry Milling with Hydrophobic Drug. Langmuir, 2014, 30, 14999-15008.	3.5	10
26	In vivo behaviour of glyco-NaI@SWCNT â€~nanobottles'. Inorganica Chimica Acta, 2019, 495, 118933.	2.4	10
27	Determination of the length of single-walled carbon nanotubes by scanning electron microscopy. MethodsX, 2018, 5, 1465-1472.	1.6	9
28	Developing soft X-ray spectroscopy for in situ characterization of nanocatalysts in catalytic reactions. Journal of Electron Spectroscopy and Related Phenomena, 2014, 197, 118-123.	1.7	8
29	Charge transfer in steam purified arc discharge single walled carbon nanotubes filled with lutetium halides. Physical Chemistry Chemical Physics, 2020, 22, 10063-10075.	2.8	7
30	Functionalization of filled radioactive multi-walled carbon nanocapsules by arylation reaction for <i>i>in vivo</i> delivery of radio-therapy. Journal of Materials Chemistry B, 2021, 10, 47-56.	5.8	6
31	Freezing efficiency of feldspars is affected by their history of previous freeze–thaw events. Physical Chemistry Chemical Physics, 2021, 23, 24905-24914.	2.8	3
32	The Role of Temperature on the Degree of End-Closing and Filling of Single-Walled Carbon Nanotubes. Nanomaterials, 2021, 11, 3365.	4.1	3