Marco Bandini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2196484/publications.pdf

Version: 2024-02-01

135 10,661 56 100 papers citations h-index g-index

147 147 147 6449
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Catalytic Functionalization of Indoles in a New Dimension. Angewandte Chemie - International Edition, 2009, 48, 9608-9644.	13.8	1,246
2	New Catalytic Approaches in the Stereoselective Friedel–Crafts Alkylation Reaction. Angewandte Chemie - International Edition, 2004, 43, 550-556.	13.8	664
3	Gold-catalyzed decorations of arenes and heteroarenes with C–C multiple bonds. Chemical Society Reviews, 2011, 40, 1358-1367.	38.1	416
4	A Journey Across Recent Advances in Catalytic and Stereoselective Alkylation of Indoles. Synlett, 2005, 2005, 1199-1222.	1.8	355
5	Counterion Effects in Homogeneous Gold Catalysis. ACS Catalysis, 2015, 5, 1638-1652.	11.2	315
6	Sequential One-Pot InBr3-Catalyzed 1,4- then 1,2-Nucleophilic Addition to Enones. Journal of Organic Chemistry, 2002, 67, 3700-3704.	3.2	259
7	Enantioselective Goldâ€Catalyzed Allylic Alkylation of Indoles with Alcohols: An Efficient Route to Functionalized Tetrahydrocarbazoles. Angewandte Chemie - International Edition, 2009, 48, 9533-9537.	13.8	247
8	Ï∈-Activated alcohols: an emerging class of alkylating agents for catalytic Friedel–Crafts reactions. Organic and Biomolecular Chemistry, 2009, 7, 1501.	2.8	236
9	Enantioselective Gold-Catalyzed Synthesis of Polycyclic Indolines. Organic Letters, 2012, 14, 1350-1353.	4.6	208
10	Highly Enantioselective Synthesis of Tetrahydro-Î ² -Carbolines and Tetrahydro-Î ³ -Carbolines Via Pd-Catalyzed Intramolecular Allylic Alkylation. Journal of the American Chemical Society, 2006, 128, 1424-1425.	13.7	197
11	Enantioselective Phaseâ€Transferâ€Catalyzed Intramolecular Azaâ€Michael Reaction: Effective Route to Pyrazinoâ€Indole Compounds. Angewandte Chemie - International Edition, 2008, 47, 3238-3241.	13.8	160
12	New Versatile Pd-Catalyzed Alkylation of Indoles via Nucleophilic Allylic Substitution:  Controlling the Regioselectivity. Organic Letters, 2004, 6, 3199-3202.	4.6	151
13	Highly enantioselective nitroaldol reaction catalyzed by new chiral copper complexes. Chemical Communications, 2007, , 616-618.	4.1	151
14	Enantioselective gold catalyzed dearomative [2+2]-cycloaddition between indoles and allenamides. Chemical Communications, 2015, 51, 2320-2323.	4.1	137
15	Innovative Catalytic Protocols for the Ringâ€Closing Friedel–Craftsâ€Type Alkylation and Alkenylation of Arenes. European Journal of Organic Chemistry, 2006, 2006, 3527-3544.	2.4	135
16	Allylic Alcohols: Sustainable Sources for Catalytic Enantioselective Alkylation Reactions. Angewandte Chemie - International Edition, 2011, 50, 994-995.	13.8	135
17	Mechanistic Insights into Enantioselective Gold-Catalyzed Allylation of Indoles with Alcohols: The Counterion Effect. Journal of the American Chemical Society, 2012, 134, 20690-20700.	13.7	134
18	Metalâ€Free Enantioselective Electrophilic Activation of Allenamides: Stereoselective Dearomatization of Indoles. Angewandte Chemie - International Edition, 2014, 53, 13854-13857.	13.8	127

#	Article	IF	CITATIONS
19	Electrophilicity: the "dark-side―of indole chemistry. Organic and Biomolecular Chemistry, 2013, 11, 5206.	2.8	125
20	Stereoselective synthesis of tetracyclic indolines via gold-catalyzed cascade cyclization reactions. Chemical Communications, 2011, 47, 7803.	4.1	124
21	Kinetic Resolution of Epoxides by a CïŁ¿C Bond-Forming Reaction: Highly Enantioselective Addition of Indoles tocis, trans, andmeso Aromatic Epoxides Catalyzed by [Cr(salen)] Complexes. Angewandte Chemie - International Edition, 2004, 43, 84-87.	13.8	120
22	Catalytic Enantioselective Alkylations with Allylic Alcohols. Synthesis, 2012, 2012, 504-512.	2.3	108
23	[Cr(Salen)] as a  bridge' between asymmetric catalysis, Lewis acids and redox processes. Chemical Communications, 2002, , 919-927.	4.1	107
24	Enantioselective organocatalyzed Henry reaction with fluoromethyl ketones. Chemical Communications, 2008, , 4360.	4.1	107
25	Catalytic enantioselective conjugate addition of indoles to simple \hat{l}_{\pm},\hat{l}^2 -unsaturated ketones. Tetrahedron Letters, 2003, 44, 5843-5846.	1.4	101
26	Goldâ€Catalyzed Direct Activation of Allylic Alcohols in the Stereoselective Synthesis of Functionalized 2â€Vinylâ€Morpholines. Chemistry - A European Journal, 2010, 16, 14272-14277.	3.3	94
27	Recoverable PEG-Supported Copper Catalyst for Highly Stereocontrolled Nitroaldol Condensation. Organic Letters, 2007, 9, 2151-2153.	4.6	93
28	Aryl alkynylation versus alkyne homocoupling: unprecedented selectivity switch in Cu, phosphine and solvent-free heterogeneous Pd-catalysed couplings. Tetrahedron, 2005, 61, 9860-9868.	1.9	91
29	InBr3-Catalyzed Friedelâ^'Crafts Addition of Indoles to Chiral Aromatic Epoxides:Â A Facile Route to Enantiopure Indolyl Derivatives. Journal of Organic Chemistry, 2002, 67, 5386-5389.	3.2	90
30	Taming Gold(I)–Counterion Interplay in the Deâ€aromatization of Indoles with Allenamides. Chemistry - A European Journal, 2014, 20, 9875-9878.	3.3	85
31	A Practical Indium Tribromide Catalysed Addition of Indoles to Nitroalkenes in Aqueous Media. Synthesis, 2002, 2002, 1110-1114.	2.3	81
32	Salen as a Chiral Activator:anti versussyn Switchable Diastereoselection in the Enantioselective Addition of Crotyl Bromide to Aromatic Aldehydes. Angewandte Chemie - International Edition, 2000, 39, 2327-2330.	13.8	79
33	Oneâ€Pot Goldâ€Catalyzed Synthesis of Azepino[1,2â€ <i>a</i>]indoles. Angewandte Chemie - International Edition, 2012, 51, 9891-9895.	13.8	79
34	Recent Advances in the Catalytic Functionalization of "Electrophilic―Indoles. Chinese Journal of Chemistry, 2020, 38, 287-294.	4.9	79
35	New Versatile Route to the Synthesis of Tetrahydro-β-carbolines and Tetrahydro-pyrano[3,4-b]indoles via an Intramolecular Michael Addition Catalyzed by InBr3. Journal of Organic Chemistry, 2003, 68, 7126-7129.	3.2	73
36	Can Simple Enones Be Useful Partners for the Catalytic Stereoselective Alkylation of Indoles?. Journal of Organic Chemistry, 2004, 69, 7511-7518.	3.2	73

#	Article	IF	CITATIONS
37	The first catalytic enantioselective Nozaki–Hiyama–Kishi reaction. Polyhedron, 2000, 19, 537-539.	2.2	67
38	Catalytic enantioselective addition of indoles to arylnitroalkenes: An effective route to enantiomerically enriched tryptamine precursors. Chirality, 2005, 17, 522-529.	2.6	67
39	New chiral diamino-bis(tert-thiophene): an effective ligand for Pd- and Zn-catalyzed asymmetric transformations. Chemical Communications, 2007, , 4519.	4.1	67
40	Electrochemiluminescent Functionalizable Cyclometalated Thiophene-Based Iridium(III) Complexes. Inorganic Chemistry, 2010, 49, 1439-1448.	4.0	66
41	Assessing the Role of Counterion in Gold-Catalyzed Dearomatization of Indoles with Allenamides by NMR Studies. ACS Catalysis, 2015, 5, 3911-3915.	11.2	66
42	Merging Synthesis and Enantioselective Functionalization of Indoles by a Goldâ€Catalyzed Asymmetric Cascade Reaction. Angewandte Chemie - International Edition, 2013, 52, 10850-10853.	13.8	65
43	Indium tribromide: a highly effective catalyst for the addition of trimethylsilyl cyanide to $\hat{1}_{\pm}$ -hetero-substituted ketones. Tetrahedron Letters, 2001, 42, 3041-3043.	1.4	64
44	Highly diastereoselective pinacol coupling of aldehydes catalyzed by titanium-Schiff base complexes. Tetrahedron Letters, 1999, 40, 1997-2000.	1.4	62
45	Asymmetric Phaseâ€Transferâ€Catalyzed Intramolecular Nâ€Alkylation of Indoles and Pyrroles: A Combined Experimental and Theoretical Investigation. Chemistry - A European Journal, 2010, 16, 12462-12473.	3.3	62
46	New developments in gold-catalyzed manipulation of inactivated alkenes. Beilstein Journal of Organic Chemistry, 2013, 9, 2586-2614.	2.2	62
47	Recent Advances in the Catalytic Dearomatization of Naphthols. European Journal of Organic Chemistry, 2020, 2020, 4087-4097.	2.4	62
48	Easy Separation of Δ and Î∙ Isomers of Highly Luminescent [Ir ^{III}]â€Cyclometalated Complexes Based on Chiral Phenolâ€Oxazoline Ancillary Ligands. Chemistry - A European Journal, 2012, 18, 8765-8773.	3.3	61
49	Gold meets enamine catalysis in the enantioselective α-allylic alkylation of aldehydes with alcohols. Chemical Science, 2012, 3, 2859.	7.4	60
50	Enantioselective Gold(I) Catalysis with Chiral Monodentate Ligands. Israel Journal of Chemistry, 2013, 53, 848-855.	2.3	59
51	Gold(I) atalyzed Dearomative [2+2] ycloaddition of Indoles with Activated Allenes: A Combined Experimental–Computational Study. Chemistry - A European Journal, 2015, 21, 18445-18453.	3.3	59
52	Chemo- and enantioselective catalytic addition of propargyl chloride to aldehydes promoted by [Cr(Salen)] complexes. Tetrahedron: Asymmetry, 2001, 12, 1063-1069.	1.8	58
53	Allylic alcohols: Valuable synthetic equivalents of non-activated alkenes in gold-catalyzed enantioselective alkylation of indoles. Journal of Organometallic Chemistry, 2011, 696, 338-347.	1.8	58
54	Photocatalystâ€free, Visible Light Driven, Gold Promoted Suzuki Synthesis of (Hetero)biaryls. ChemCatChem, 2017, 9, 4456-4459.	3.7	51

#	Article	IF	CITATIONS
55	Enantioselective catalytic addition of allyl organometallic reagents to aldehydes promoted by [Cr(Salen)]: the hidden role played by weak Lewis acids in metallo-Salen promoted reactions. Tetrahedron, 2001, 57, 835-843.	1.9	50
56	Cr(Salen)-Catalyzed Addition of 1,3-Dichloropropene to Aromatic Aldehydes. A Simple Access to Optically Active Vinyl Epoxides. Organic Letters, 2001, 3, 1153-1155.	4.6	48
57	Enantioselective reduction of ketones with triethoxysilane catalyzed by chiral bis-oxazoline titanium complexes. Chemical Communications, 1999, , 39-40.	4.1	46
58	Polymer-Supported Indium Lewis Acid: Highly Versatile Catalyst for Regio- and Stereoselective Ring-Opening of Epoxides. Advanced Synthesis and Catalysis, 2004, 346, 573-578.	4.3	46
59	Nâ€Allenyl Amides and Oâ€Allenyl Ethers in Enantioselective Catalysis. European Journal of Organic Chemistry, 2016, 2016, 3135-3142.	2.4	46
60	Zinc triflate $\hat{a}\in\hat{b}$ is-oxazoline complexes as chiral catalysts: enantioselective reduction of \hat{a} -alkoxy-ketones with catecholborane. Tetrahedron Letters, 2000, 41, 1601-1605.	1.4	45
61	New Entry to Polycyclic Fused Indoles via Gold(I) atalyzed Cascade Reaction. Chemistry - an Asian Journal, 2013, 8, 1776-1779.	3.3	43
62	Iron(III)â€Catalyzed Intramolecular Friedel–Crafts Alkylation of Electronâ€Deficient Arenes with Ï€â€Activated Alcohols. Advanced Synthesis and Catalysis, 2009, 351, 2521-2524.	4.3	42
63	Visible‣ightâ€Induced Direct Photocatalytic Carboxylation of Indoles with CBr ₄ /MeOH. Chemistry - A European Journal, 2015, 21, 18052-18056.	3.3	39
64	Designing Newl±,l²-Unsaturated Thioesters for the Catalytic, EnantioselectiveFriedelCrafts Alkylation of Indoles. Helvetica Chimica Acta, 2003, 86, 3753-3763.	1.6	37
65	PPh ₃ AuTFA Catalyzed in the Dearomatization of 2-Naphthols with Allenamides. Organic Letters, 2018, 20, 7380-7383.	4.6	37
66	Solid Acid-Catalysed Michael-Type Conjugate Addition of Indoles to Electron-Poor CC Bonds: Towards High Atom Economical Semicontinuous Processes. Advanced Synthesis and Catalysis, 2004, 346, 545-548.	4.3	35
67	Efficient Guanidine-Catalyzed Alkylation of Indoles with Fluoromethyl Ketones in the presence of Water. Organic Letters, 2009, 11, 2093-2096.	4.6	35
68	Bis(oxazoline)titanium Complexes as Chiral Catalysts for Enantioselective Hydrosilylation of Ketones â° A Combined Experimental and Theoretical Investigation. European Journal of Organic Chemistry, 2003, 2003, 2972-2984.	2.4	34
69	Goldâ€Catalyzed Allylation Reactions. ChemCatChem, 2016, 8, 1437-1453.	3.7	34
70	Nickel Catalyzed Functionalization of Allenes. Chinese Journal of Chemistry, 2019, 37, 431-441.	4.9	34
71	Ligandâ€Free Silver(I) atalyzed Intramolecular Friedel–Crafts Alkylation of Arenes with Allylic Alcohols. Advanced Synthesis and Catalysis, 2009, 351, 319-324.	4.3	33
72	A practical synthetic route to functionalized THBCs and oxygenated analogues via intramolecular Friedel–Crafts reactions. Organic and Biomolecular Chemistry, 2006, 4, 3291-3296.	2.8	32

#	Article	IF	CITATIONS
73	Phosphine-Catalyzed Stereoselective Dearomatization of 3-NO ₂ -Indoles with Allenoates. Journal of Organic Chemistry, 2019, 84, 6347-6355.	3.2	32
74	Enantioselective CO ₂ Fixation Via a Heckâ€Coupling/Carboxylation Cascade Catalyzed by Nickel. Chemistry - A European Journal, 2021, 27, 7657-7662.	3.3	32
7 5	Phosphinite Ligand Effects in Palladium(II)-Catalysed Cycloisomerisation of 1,6-Dienes: Bicyclo [3.2.0]heptanyl Diphosphinite (B[3.2.0]DPO) Ligands Exhibit Flexible Bite Angles, an Effect Derived from Conformational Changes (exo- orendo-Envelope) in the Bicyclic Ligand Scaffold. Advanced Synthesis and Catalysis, 2006, 348, 2515-2530.	4.3	31
76	Gold(I)â€Catalyzed Functionalization of Benzhydryl C(<i>sp</i> ³)H Bonds. Advanced Synthesis and Catalysis, 2013, 355, 2227-2231.	4.3	31
77	Creating Chemical Diversity in Indole Compounds by Merging Au and Ru Catalysis. ChemCatChem, 2010, 2, 661-665.	3.7	30
78	Graphene Oxide Promotes Site-Selective Allylic Alkylation of Thiophenes with Alcohols. Organic Letters, 2018, 20, 3705-3709.	4.6	30
79	New opportunities in the stereoselective dearomatization of indoles. Pure and Applied Chemistry, 2016, 88, 207-214.	1.9	29
80	Synthesis, cytotoxicity and anti-cancer activity of new alkynyl-gold(<scp>i</scp>) complexes. Dalton Transactions, 2016, 45, 1546-1553.	3.3	29
81	Nickel-Catalyzed Synthesis of Stereochemically Defined Enamides via Bi- and Tricomponent Coupling Reaction. Organic Letters, 2017, 19, 5034-5037.	4.6	29
82	Goldâ€Catalyzed Dearomatization of 2â€Naphthols with Alkynes. Chemistry - A European Journal, 2017, 23, 17473-17477.	3.3	29
83	Novel Chiral Diamino-Oligothiophenes as Valuable Ligands in Pd-Catalyzed Allylic Alkylations. On the "Primary―Role of "Secondary―Interactions in Asymmetric Catalysis. Advanced Synthesis and Catalysis, 2005, 347, 1507-1512.	4.3	28
84	Electropolymerized Pd-Containing Thiophene Polymer:  A Reusable Supported Catalyst for Cross-Coupling Reactions. Organometallics, 2007, 26, 4373-4375.	2.3	27
85	Gold(I)â€Assisted αâ€Allylation of Enals and Enones with Alcohols. Angewandte Chemie - International Edition, 2015, 54, 14885-14889.	13.8	27
86	Tandem <scp>Functionalizationâ€Carboxylation</scp> Reactions of <scp>Ï€â€Systems</scp> with <scp>CO₂</scp> . Chinese Journal of Chemistry, 2021, 39, 3116-3126.	4.9	26
87	New Recoverable Poly(ethylene glycol)-SupportedC1-Diamino-oligothiophene Ligands for Palladium-Promoted Asymmetric Allylic Alkylation (AAA) Reactions. Advanced Synthesis and Catalysis, 2006, 348, 1521-1527.	4.3	25
88	Controlling Stereochemical Outcomes of Asymmetric Processes by Catalyst Remote Molecular Functionalizations: Chiral Diamino-oligothiophenes (DATs) as Ligands in Asymmetric Catalysis. Chemistry - A European Journal, 2006, 12, 667-675.	3.3	23
89	An Update on Catalytic Enantioselective Alkylations of Indoles. Mini-Reviews in Organic Chemistry, 2007, 4, 115-124.	1.3	23
90	Accessing chemical diversity by stereoselective gold-catalyzed manipulation of allylic and propargylic alcohols. Pure and Applied Chemistry, 2012, 84, 1673-1684.	1.9	23

#	Article	IF	Citations
91	Diastereoselective addition of higher order cuprates and zinc-copper reagents to imines derived from (S)-1-phenylethylamine. Tetrahedron, 1999, 55, 8103-8110.	1.9	20
92	Synthesis and Crystallographic Characterization of Chiral Bis-oxazoline-amides. Fine-Tunable Ligands for Pd-Catalyzed Asymmetric Alkylations. Journal of Organic Chemistry, 2006, 71, 6451-6458.	3.2	20
93	Visible-Light-Driven Synthesis of 1,3,4-Trisubstituted Pyrroles from Aryl Azides. Organic Letters, 2019, 21, 7782-7786.	4.6	20
94	Graphene Oxide as a Mediator in Organic Synthesis: a Mechanistic Focus. Angewandte Chemie - International Edition, 2020, 59, 20767-20778.	13.8	20
95	Gold-catalyzed Dearomatization Reactions. Chimia, 2018, 72, 610.	0.6	20
96	Asymmetric synthesis with "privileged" ligands. Pure and Applied Chemistry, 2001, 73, 325-329.	1.9	19
97	Organocatalytic enantioselective synthesis of 1-vinyl tetrahydroisoquinolines through allenamide activation with chiral $\text{Br}\tilde{A}_{,}$ nsted acids. RSC Advances, 2015, 5, 10546-10550.	3.6	19
98	Synthesis, Multiphase Characterization, and Helicity Control in Chiral DACH-Linked Oligothiophenes. Chemistry - A European Journal, 2006, 12, 7304-7312.	3.3	18
99	ChiralC2-Boron-Bis(oxazolines) in Asymmetric Catalysis – A Theoretical Study of the Catalyzed Enantioselective Reduction of Ketones Promoted by Catecholborane. European Journal of Organic Chemistry, 2006, 2006, 4596-4608.	2.4	18
100	Covalent or Nonâ€Covalent? A Mechanistic Insight into the Enantioselective Brønsted Acid Catalyzed Dearomatization of Indoles with Allenamides. ChemCatChem, 2018, 10, 2442-2449.	3.7	18
101	Titanium-catalyzed Reformatsky-type reaction. Journal of Organometallic Chemistry, 2007, 692, 3191-3197.	1.8	17
102	Highly Efficient Molybdenum(II) atalyzed Intramolecular Allylic Alkylation of Arenes. Advanced Synthesis and Catalysis, 2008, 350, 531-536.	4.3	16
103	New adaptive chiral thiophene ligands for copperâ€catalyzed asymmetric Henry reaction. Chirality, 2009, 21, 239-244.	2.6	16
104	Gold(I)-catalyzed synthesis of \hat{I}^3 -vinylbutyrolactones by intramolecular oxaallylic alkylation with alcohols. Beilstein Journal of Organic Chemistry, 2011, 7, 1198-1204.	2.2	16
105	Nickel catalyzed regio- and stereoselective arylation and methylation of allenamides <i>via</i> coupling reactions. An experimental and computational study. Organic Chemistry Frontiers, 2018, 5, 3231-3239.	4.5	16
106	Visibleâ€Light Assisted Covalent Surface Functionalization of Reduced Graphene Oxide Nanosheets with Arylazo Sulfones. Chemistry - A European Journal, 2022, 28, e202200333.	3.3	16
107	Design of boron bis-oxazolinate (B-BOXate) complexes: a new class of stable organometallic catalysts. Chemical Communications, 2001, , 1318-1319.	4.1	15
108	New Electrochemically Generated Polymeric Pd Complexes as Heterogeneous Catalysts for Suzuki Crossâ€Coupling Reactions. European Journal of Organic Chemistry, 2009, 2009, 3554-3561.	2.4	15

#	Article	IF	CITATIONS
109	DFT Mechanistic Investigation of the Gold(I)â€Catalyzed Synthesis of Azepino[1,2â€ <i>a</i>]indoles. ChemCatChem, 2015, 7, 2480-2484.	3.7	15
110	Allylic and Allenylic Dearomatization of Indoles Promoted by Graphene Oxide by Covalent Grafting Activation Mode. Chemistry - A European Journal, 2020, 26, 10427-10432.	3.3	15
111	New Chiral BINOLâ€Based Phosphates for Enantioselective [Au(I)]â€Catalyzed Dearomatization of βâ€Naphthols with Allenamides. European Journal of Organic Chemistry, 2021, 2021, 1732-1736.	2.4	15
112	Catalytic αâ€Allylation of Enones with Alcohols <i>via</i> [Gold(I)]â€Mediated [3,3]â€Sigmatropic Rearrangement of Propargylic Carboxylates. Advanced Synthesis and Catalysis, 2016, 358, 1404-1409.	4.3	13
113	TBAF catalyzed one-pot synthesis of allenyl-indoles. Organic Chemistry Frontiers, 2017, 4, 1849-1853.	4.5	13
114	Visible-Light Photoredox Catalyzed Dehydrogenative Synthesis of Allylic Carboxylates from Styrenes. Organic Letters, 2021, 23, 4441-4446.	4.6	13
115	A Nonclassical Stereoselective Semi-Synthesis of Drospirenone via Cross-Metathesis Reaction. Synthesis, 2008, 2008, 3801-3804.	2.3	12
116	Merging C–C σ-bond activation of cyclobutanones with CO ₂ fixation <i>via</i> Ni-catalysis. Chemical Communications, 2022, 58, 4071-4074.	4.1	12
117	Regio- and Stereoselective Electrochemical Alkylation of Morita–Baylis–Hillman Adducts. Organic Letters, 2022, 24, 4354-4359.	4.6	12
118	Regio- and Stereoselective Nickel-Catalyzed Coupling of Boronic Acids with Allenoates. Synthesis, 2018, 50, 3187-3196.	2.3	10
119	Visible Light-Driven, Gold(I)-Catalyzed Preparation of Symmetrical (Hetero)biaryls by Homocoupling of Arylazo Sulfones. Journal of Organic Chemistry, 2022, 87, 4863-4872.	3.2	10
120	Redoxâ€Neutral Metalâ€Free Threeâ€Component Carbonylative Dearomatization of Pyridine Derivatives with CO ₂ . Chemistry - A European Journal, 2019, 25, 15272-15276.	3.3	9
121	Synthesis, structural characterization, and catalytic activity of chiral diamine and diimine Pd(II)-complexes. Inorganica Chimica Acta, 2007, 360, 1000-1008.	2.4	7
122	Blue and highly emitting [Ir(iv)] complexes by an efficient photoreaction of yellow luminescent [Ir(iii)] complexes. Journal of Materials Chemistry C, 2014, 2, 4461.	5.5	7
123	Graphene Oxide as a Mediator in Organic Synthesis: a Mechanistic Focus. Angewandte Chemie, 2020, 132, 20951-20962.	2.0	6
124	Boosting Gold(I) Catalysis via Weak Interactions: New Fine-Tunable Impy Ligands. ACS Organic & Inorganic Au, 2022, 2, 229-235.	4.0	6
125	The First Catalytic Enantioselective Nozaki–Hiyama Reaction. Angewandte Chemie - International Edition, 1999, 38, 3357-3359.	13.8	5
126	$\label{lem:ninPs@rGO} N an occomposites as \ Heterogenous \ Catalysts for \ Thio carboxylation \ Cross-Coupling \ Reactions. \ Synthesis, 0, , .$	2.3	5

#	Article	IF	CITATIONS
127	Visible‣ightâ€Assisted Synthesis of Allylic Triflamides via Dual Acridinium/Co Catalysis. Advanced Synthesis and Catalysis, 2022, 364, 720-725.	4.3	5
128	A Cross Metathesis Based Protocol for the Effective Synthesis of FunctionÂalised Allyl Bromides and Chlorides. Synthesis, 2004, 2004, 409-414.	2.3	4
129	Site-selective synthesis of 1,3-dioxin-3-ones <i>via</i> a gold(<scp>i</scp>) catalyzed cascade reaction. Chemical Communications, 2020, 56, 7734-7737.	4.1	4
130	Convenient synthesis of tricyclic N(1)–C(2)-fused oxazino-indolones <i>via</i> [Au(<scp>i</scp>)] catalyzed hydrocarboxylation of allenes. Chemical Communications, 2022, 58, 8698-8701.	4.1	4
131	Diastereoselective Addition of Organometallic Reagents to Diimines Derived from (R,R)-1,2-Diaminocyclohexane and Aromatic Aldehydes. Letters in Organic Chemistry, 2009, 6, 434-438.	0.5	3
132	Scandium catalysed stereoselective thio-allylation of allenyl-imidates. Chemical Communications, 2019, 55, 9669-9672.	4.1	3
133	Unveiling the Reaction Machinery of the [Au ^I]â€Catalyzed Synthesis of Substituted Acenes by a [1,5]â€H Shift Cascade Reaction. ChemCatChem, 2017, 9, 316-321.	3.7	2
134	Practical Aspects in the Gram-Scale Synthesis of Chiral Diamino-Bithiophene  DAT2' Ligand. Synthesis, 2007, 2007, 1587-1588.	2.3	1
135	Chapter 4. Metal Catalysts on Soluble Polymers. RSC Green Chemistry, 0, , 94-122.	0.1	O