
Sarah R Walmsley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2195457/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hypoxia-induced neutrophil survival is mediated by HIF-1α–dependent NF-κB activity. Journal of Experimental Medicine, 2005, 201, 105-115.	8.5	762
2	MET is required for the recruitment of anti-tumoural neutrophils. Nature, 2015, 522, 349-353.	27.8	359
3	A Zebrafish Compound Screen Reveals Modulation of Neutrophil Reverse Migration as an Anti-Inflammatory Mechanism. Science Translational Medicine, 2014, 6, 225ra29.	12.4	229
4	Activation of hypoxia-inducible factor- $1\hat{l}$ (Hif- $1\hat{l}$) delays inflammation resolution by reducing neutrophil apoptosis and reverse migration in a zebrafish inflammation model. Blood, 2011, 118, 712-722.	1.4	218
5	Inflammation and Hypoxia: HIF and PHD Isoform Selectivity. Trends in Molecular Medicine, 2019, 25, 33-46.	6.7	151
6	Prolyl hydroxylase 3 (PHD3) is essential for hypoxic regulation of neutrophilic inflammation in humans and mice. Journal of Clinical Investigation, 2011, 121, 1053-1063.	8.2	147
7	Hypoxia Inducible Factor Signaling Modulates Susceptibility to Mycobacterial Infection via a Nitric Oxide Dependent Mechanism. PLoS Pathogens, 2013, 9, e1003789.	4.7	129
8	Hypoxia-inducible factor 2α regulates key neutrophil functions in humans, mice, and zebrafish. Blood, 2014, 123, 366-376.	1.4	124
9	Hypoxia Selectively Inhibits Respiratory Burst Activity and Killing of <i>Staphylococcus aureus</i> in Human Neutrophils. Journal of Immunology, 2011, 186, 453-463.	0.8	116
10	Involvement of a ferroprotein sensor in hypoxia-mediated inhibition of neutrophil apoptosis. Blood, 2002, 100, 3008-3016.	1.4	100
11	The survival effect of TNF-α  in human neutrophils is mediated via NF-κB-dependent IL-8 release. European Journal of Immunology, 2004, 34, 1733-1743.	2.9	92
12	The role of neutrophils in cancer. British Medical Bulletin, 2018, 128, 5-14.	6.9	90
13	Distinct Cell Death Programs in Monocytes Regulate Innate Responses Following Challenge with Common Causes of Invasive Bacterial Disease. Journal of Immunology, 2010, 185, 2968-2979.	0.8	84
14	Neutrophils Fuel Effective Immune Responses through Gluconeogenesis and Glycogenesis. Cell Metabolism, 2021, 33, 411-423.e4.	16.2	84
15	The role of HIF-1α in myeloid cell inflammation. Trends in Immunology, 2005, 26, 434-439.	6.8	72
16	Prolyl hydroxylase 2 inactivation enhances glycogen storage and promotes excessive neutrophilic responses. Journal of Clinical Investigation, 2017, 127, 3407-3420.	8.2	71
17	Loss of the Oxygen Sensor PHD3 Enhances the Innate Immune Response to Abdominal Sepsis. Journal of Immunology, 2012, 189, 1955-1965.	0.8	70
18	Subversion of a Lysosomal Pathway Regulating Neutrophil Apoptosis by a Major Bacterial Toxin, Pyocyanin. Journal of Immunology, 2008, 180, 3502-3511.	0.8	67

#	Article	IF	CITATIONS
19	Neutrophils from patients with heterozygous germline mutations in the von Hippel Lindau protein (pVHL) display delayed apoptosis and enhanced bacterial phagocytosis. Blood, 2006, 108, 3176-3178.	1.4	63
20	Hypoxia determines survival outcomes of bacterial infection through HIF-1α–dependent reprogramming of leukocyte metabolism. Science Immunology, 2017, 2, .	11.9	61
21	Rate of replenishment and microenvironment contribute to the sexually dimorphic phenotype and function of peritoneal macrophages. Science Immunology, 2020, 5, .	11.9	60
22	HIF-mediated innate immune responses: cell signaling and therapeutic implications. Hypoxia (Auckland,) Tj ETQqO	0 0 rgBT 1.9	/Overlock 10
23	Exploring the HIFs, buts and maybes of hypoxia signalling in disease: lessons from zebrafish models. DMM Disease Models and Mechanisms, 2015, 8, 1349-1360.	2.4	57
24	Hypoxia and the regulation of myeloid cell metabolic imprinting: consequences for the inflammatory response. EMBO Reports, 2019, 20, .	4.5	57
25	Neutrophil HIF-1α stabilization is augmented by mitochondrial ROS produced via the glycerol 3-phosphate shuttle. Blood, 2022, 139, 281-286.	1.4	56
26	Opsonic Phagocytosis in Chronic Obstructive Pulmonary Disease Is Enhanced by Nrf2 Agonists. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 739-750.	5.6	53
27	Cezanne Regulates Inflammatory Responses to Hypoxia in Endothelial Cells by Targeting TRAF6 for Deubiquitination. Circulation Research, 2013, 112, 1583-1591.	4.5	51
28	z-VAD-fmk augmentation of TNFα-stimulated neutrophil apoptosis is compound specific and does not involve the generation of reactive oxygen species. Blood, 2005, 105, 2970-2972.	1.4	49
29	Functional Redundancy of Class I Phosphoinositide 3-Kinase (PI3K) Isoforms in Signaling Growth Factor-Mediated Human Neutrophil Survival. PLoS ONE, 2012, 7, e45933.	2.5	45
30	The HIF/VHL Pathway. American Journal of Respiratory Cell and Molecular Biology, 2008, 38, 251-255.	2.9	40
31	ÂÂÂÂÂÂÂA type I IFN, prothrombotic hyperinflammatory neutrophil signature is distinct for COVID-19 ARDSÂÂÂ . Wellcome Open Research, 2021, 6, 38.	1.8	35
32	What can we learn from highly purified neutrophils?. Biochemical Society Transactions, 2004, 32, 468-469.	3.4	34
33	IL4Rα Signaling Abrogates Hypoxic Neutrophil Survival and Limits Acute Lung Injury Responses <i>In Vivo</i> . American Journal of Respiratory and Critical Care Medicine, 2019, 200, 235-246.	5.6	33
34	Deficiency of tumour necrosis factor-related apoptosis-inducing ligand exacerbates lung injury and fibrosis. Thorax, 2012, 67, 796-803.	5.6	31
35	ÂÂÂÂÂÂÂA type I IFN, prothrombotic hyperinflammatory neutrophil signature is distinct for COVID-19 ARDSÂÂÂ . Wellcome Open Research, 2021, 6, 38.	1.8	29
36	Hypoxia, the HIF pathway and neutrophilic inflammatory responses. Biological Chemistry, 2013, 394, 471-477.	2.5	28

SARAH R WALMSLEY

#	Article	IF	CITATIONS
37	Macrophage miR-210 induction and metabolic reprogramming in response to pathogen interaction boost life-threatening inflammation. Science Advances, 2021, 7, .	10.3	26
38	The transcription factor EGR2 is indispensable for tissue-specific imprinting of alveolar macrophages in health and tissue repair. Science Immunology, 2021, 6, eabj2132.	11.9	23
39	Characterization of the survival effect of tumour necrosis factor- \hat{l}_{\pm} in human neutrophils. Biochemical Society Transactions, 2004, 32, 456-460.	3.4	21
40	Hypoxia. Hypoxia, hypoxia inducible factor and myeloid cell function. Arthritis Research and Therapy, 2009, 11, 219.	3.5	21
41	Roles of neutrophils in the regulation of the extent of human inflammation through delivery of IL-1 and clearance of chemokines. Journal of Leukocyte Biology, 2013, 93, 7-19.	3.3	21
42	Mutations in succinate dehydrogenase B (SDHB) enhance neutrophil survival independent of HIF-1α expression. Blood, 2016, 127, 2641-2644.	1.4	21
43	Hypoxia drives murine neutrophil protein scavenging to maintain central carbon metabolism. Journal of Clinical Investigation, 2021, 131, .	8.2	21
44	Hypoxia shapes the immune landscape in lung injury and promotes the persistence of inflammation. Nature Immunology, 2022, 23, 927-939.	14.5	21
45	The Regulation of Pulmonary Inflammation by the Hypoxia-Inducible Factor–Hydroxylase Oxygen-Sensing Pathway. Annals of the American Thoracic Society, 2014, 11, S271-S276.	3.2	18
46	Hypoxic Regulation of Neutrophil Apoptosis Role: of Reactive Oxygen Intermediates in Constitutive and Tumor Necrosis Factor α-Induced Cell Death. Annals of the New York Academy of Sciences, 2003, 1010, 417-425.	3.8	12
47	Hypoxia Modulates Platelet Purinergic Signalling Pathways. Thrombosis and Haemostasis, 2020, 120, 253-261.	3.4	12
48	Semaphorin 3F signaling actively retains neutrophils at sites of inflammation. Journal of Clinical Investigation, 2020, 130, 3221-3237.	8.2	12
49	Hypoxia and reprogramming of host pathogen interactions. Current Opinion in Physiology, 2019, 7, 15-20.	1.8	11
50	Pseudomonas expression of an oxygen sensing prolyl hydroxylase homologue regulates neutrophil host responses in vitro and in vivo. Wellcome Open Research, 2017, 2, 104.	1.8	11
51	A decoy receptor 3 analogue reduces localised defects in phagocyte function in pneumococcal pneumonia. Thorax, 2012, 67, 985-992.	5.6	10
52	Neutrophil energetics and oxygen sensing. Blood, 2014, 123, 2753-2754.	1.4	9
53	A local circadian clock calls time on lung inflammation. Nature Medicine, 2014, 20, 809-811.	30.7	8
54	Getting DAMP(s) Wets the Whistle for Neutrophil Recruitment. Immunity, 2018, 48, 846-848.	14.3	8

#	Article	IF	CITATIONS
55	Pressure regulates immune-cell function. Nature, 2019, 573, 41-42.	27.8	7
56	Coagulation factor V is a T-cell inhibitor expressed by leukocytes in COVID-19. IScience, 2022, 25, 103971.	4.1	7
57	New insights into oxygen sensing at a cellular level. Thorax, 2004, 59, 90-92.	5.6	2
58	Hypoxia and host pathogen responses. Microbes and Infection, 2017, 19, 143.	1.9	2
59	Microenvironmental Regulation of Innate Immune Cell Function. , 2017, , 947-970.		1
60	Making a bed for viral infections. Science, 2020, 370, 166-167.	12.6	1