Paolo Dolcet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2195354/publications.pdf

Version: 2024-02-01

430874 454955 39 952 18 citations h-index g-index papers

40 40 40 1605 all docs docs citations times ranked citing authors

30

#	Article	IF	CITATIONS
1	Surface Noble Metal Concentration on Ceria as a Key Descriptor for Efficient Catalytic CO Oxidation. ACS Catalysis, 2022, 12, 2473-2486.	11.2	19
2	Design Principles and Insights into the Liquid-Phase Exfoliation of Alpha-MoO ₃ for the Production of Colloidal 2D Nano-inks in Green Solvents. Journal of Physical Chemistry C, 2022, 126, 404-415.	3.1	2
3	Insights into the Structural Dynamics of Pt/CeO2 Single-Site Catalysts during CO Oxidation. Catalysts, 2021, 11, 617.	3.5	6
4	Tuning the Activity of a Hybrid Polymer–Oxocluster Catalyst: A Composition—Selectivity Correlation. Polymers, 2021, 13, 3268.	4.5	1
5	Microfluidic Crystallization of Surfactant-Free Doped Zinc Sulfide Nanoparticles for Optical Bioimaging Applications. ACS Applied Materials & Samp; Interfaces, 2020, 12, 44074-44087.	8.0	13
6	Tracking the formation, fate and consequence for catalytic activity of Pt single sites on CeO2. Nature Catalysis, 2020, 3, 824-833.	34.4	209
7	Ligand-free ZnS nanoparticles: as easy and green as it gets. Chemical Communications, 2020, 56, 8707-8710.	4.1	7
8	The role of the synthetic pathways on properties of Ag2S nanoparticles for photothermal applications. Applied Surface Science, 2020, 514, 145856.	6.1	17
9	The Influence of the Gold Particle Size on the Catalytic Oxidation of 5-(Hydroxymethyl)furfural. Catalysts, 2020, 10, 342.	3.5	20
10	The Effect of Prereduction on the Performance of Pd/Al ₂ O ₃ and Pd/CeO ₂ Catalysts during Methane Oxidation. Industrial & Engineering Chemistry Research, 2019, 58, 12561-12570.	3.7	58
11	Exploring wet chemistry approaches to ZnFe ₂ O ₄ spinel ferrite nanoparticles with different inversion degrees: a comparative study. Inorganic Chemistry Frontiers, 2019, 6, 1527-1534.	6.0	32
12	Easy and Green Route towards Nanostructured ZnO as an Active Sensing Material with Unexpected H ₂ S Dosimeterâ€Type Behaviour. European Journal of Inorganic Chemistry, 2019, 2019, 837-846.	2.0	4
13	Effects of graphite nano-particle additions on dry sliding behaviour of plasma-electrolytic-oxidation-treated EV31A magnesium alloy against steel in air. Wear, 2018, 404-405, 122-132.	3.1	50
14	Very fast crystallisation of MFe2O4 spinel ferrites (M = Co, Mn, Ni, Zn) under low temperature hydrothermal conditions: a time-resolved structural investigation. Green Chemistry, 2018, 20, 2257-2268.	9.0	25
15	Thermal Evolution of ZnS Nanostructures: Effect of Oxidation Phenomena on Structural Features and Photocatalytical Performances. Inorganic Chemistry, 2018, 57, 13104-13114.	4.0	15
16	Antibacterial effect of PEO coating with silver on AA7075. Materials Science and Engineering C, 2017, 75, 554-564.	7.3	32
17	Pursuing the stabilisation of crystalline nanostructured magnetic manganites through a green low temperature hydrothermal synthesis. Journal of Materials Chemistry C, 2017, 5, 3359-3371.	5.5	15
18	Room-Temperature Crystallization of CuS Nanostructures for Photothermal Applications through a Nanoreactor Approach. European Journal of Inorganic Chemistry, 2017, 2017, 2745-2754.	2.0	8

#	Article	IF	Citations
19	Synergy of Miniemulsion and Solvothermal Conditions for the Low-Temperature Crystallization of Magnetic Nanostructured Transition-Metal Ferrites. Chemistry of Materials, 2017, 29, 985-997.	6.7	30
20	In Situ Study of the Oxygen-Induced Transformation of Pyrochlore Ce ₂ Zr ₂ O _{7+<i>x</i>)} to the κ-Ce ₂ Zr ₂ O ₈ Phase. Chemistry of Materials, 2017, 29, 9218-9226.	6.7	20
21	Smart and Covalently Crossâ€Linked: Hybrid Shape Memory Materials Reinforced through Covalent Bonds by Zirconium Oxoclusters. ChemPlusChem, 2016, 81, 338-350.	2.8	4
22	Synthesis and full characterization of the phase-pure pyrochlore Ce2Zr2O7 and the κ-Ce2Zr2O8 phases. Applied Catalysis B: Environmental, 2016, 197, 23-34.	20.2	28
23	Plasma electrolytic oxidation coating produced on 39NiCrMo3 steel. Surface and Coatings Technology, 2016, 307, 73-80.	4.8	33
24	Crystallization at Nanodroplet Interfaces in Emulsion Systems: A Soft-Template Strategy for Preparing Porous and Hollow Nanoparticles. Langmuir, 2016, 32, 13116-13123.	3.5	15
25	In-depth mesocrystal formation analysis of microwave-assisted synthesis of LiMnPO4 nanostructures in organic solution. CrystEngComm, 2016, 18, 316-327.	2.6	13
26	Engineering of oxoclusters-reinforced polymeric materials with application as heterogeneous oxydesulfurization catalysts. Applied Catalysis B: Environmental, 2016, 182, 636-644.	20.2	22
27	Synthesis and Physicochemical Characterization of Ce _{$1\hat{a}^*\hat{l}^*< i> i>< sub>Gase Study on the Impact of the Oxygen Storage Capacity on the HCl Oxidation Reaction. ChemCatChem, 2015, 7, 3738-3747.$}	3.7	16
28	Very low temperature wet-chemistry colloidal routes for mono- and polymetallic nanosized crystalline inorganic compounds. Journal of Sol-Gel Science and Technology, 2015, 73, 591-604.	2.4	7
29	Room temperature crystallization of highly luminescent lanthanide-doped CaF ₂ in nanosized droplets: first example of the synthesis of metal halogenide in miniemulsion with effective doping and size control. RSC Advances, 2015, 5, 16302-16310.	3.6	27
30	An Effective Two-Emulsion Approach to the Synthesis of Doped ZnS Crystalline Nanostructures. European Journal of Inorganic Chemistry, 2015, 2015, 706-714.	2.0	13
31	Transition Metal Manganites Prepared by a Green and Low-Temperature Wet Chemistry Route, Investigated by XPS. Surface Science Spectra, 2015, 22, 1-20.	1.3	6
32	Pursuing the Crystallization of Mono- and Polymetallic Nanosized Crystalline Inorganic Compounds by Low-Temperature Wet-Chemistry and Colloidal Routes. Chemical Reviews, 2015, 115, 11449-11502.	47.7	55
33	Hierarchically Organized Silica–Titania Monoliths Prepared under Purely Aqueous Conditions. Chemistry - A European Journal, 2014, 20, 17409-17419.	3.3	9
34	Simple, common but functional: biocompatible and luminescent rare-earth doped magnesium and calcium hydroxides from miniemulsion. Journal of Materials Chemistry B, 2014, 2, 6639-6651.	5.8	10
35	Inorganic chemistry in a nanoreactor: Au/TiO2 nanocomposites by photolysis of a single-source precursor in miniemulsion. Nanoscale, 2013, 5, 10534.	5.6	21
36	Inorganic Chemistry in a Nanoreactor: Doped ZnO Nanostructures by Miniemulsion. European Journal of Inorganic Chemistry, 2013, 2013, 2291-2300.	2.0	19

PAOLO DOLCET

#	Article	IF	CITATIONS
37	Sol–gel processes at the droplet interface: hydrous zirconia and hafnia nanocapsules by interfacial inorganic polycondensation. Journal of Materials Chemistry, 2012, 22, 5622.	6.7	20
38	Miniemulsions as chemical nanoreactors for the room temperature synthesis of inorganic crystalline nanostructures: ZnO colloids. Journal of Materials Chemistry, 2012, 22, 1620-1626.	6.7	40
39	Tin(IV) Oxide Coatings from Hybrid Organotin/Polymer Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2011, 3, 4292-4298.	8.0	11