Mary I O'connor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2194986/publications.pdf

Version: 2024-02-01

71 papers	14,022 citations	71102 41 h-index	70 g-index
80	80	80	19513 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Expert perspectives on global biodiversity loss and its drivers and impacts on people. Frontiers in Ecology and the Environment, 2023, 21, 94-103.	4.0	49
2	An Empiricist's Guide to Using Ecological Theory. American Naturalist, 2022, 199, 1-20.	2.1	13
3	Heat Wave Intensity Drives Sublethal Reproductive Costs in a Tidepool Copepod. Integrative Organismal Biology, 2022, 4, obac005.	1.8	4
4	Do not downplay biodiversity loss. Nature, 2022, 601, E27-E28.	27.8	17
5	The biogeography of community assembly: latitude and predation drive variation in community trait distribution in a guild of epifaunal crustaceans. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20211762.	2.6	9
6	A reciprocal transplant experiment sheds new light on a classic marine seagrass-algal symbiosis and suggests influence of epiphytic symbiont on seagrass microbiota. Aquatic Botany, 2022, 179, 103511.	1.6	7
7	Microeukaryotic Communities Associated With the Seagrass <i>Zostera marina</i> Are Spatially Structured. Journal of Eukaryotic Microbiology, 2021, 68, e12827.	1.7	12
8	From coast to coast to coast: ecology and management of seagrass ecosystems across Canada. Facets, 2021, 6, 139-179.	2.4	28
9	Aquatic biodiversity enhances multiple nutritional benefits to humans. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	44
10	Wildcards in climate change biology. Ecological Monographs, 2021, 91, e01471.	5. 4	9
11	A Biophysical Model and Network Analysis of Invertebrate Community Dispersal Reveals Regional Patterns of Seagrass Habitat Connectivity. Frontiers in Marine Science, 2021, 8, .	2.5	4
12	Grand challenges in biodiversity–ecosystem functioning research in the era of science–policy platforms require explicit consideration of feedbacks. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210783.	2.6	8
13	Host-Specificity and Core Taxa of Seagrass Leaf Microbiome Identified Across Tissue Age and Geographical Regions. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	12
14	Life in fluctuating environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190454.	4.0	81
15	Opportunities for behavioral rescue under rapid environmental change. Global Change Biology, 2019, 25, 3110-3120.	9.5	53
16	Trophic interactions modify the temperature dependence of community biomass and ecosystem function. PLoS Biology, 2019, 17, e2006806.	5.6	15
17	Species richness change across spatial scales. Oikos, 2019, 128, 1079-1091.	2.7	160
18	Towards a multiâ€trophic extension of metacommunity ecology. Ecology Letters, 2019, 22, 19-33.	6.4	79

#	Article	IF	CITATIONS
19	Function and functional redundancy in microbial systems. Nature Ecology and Evolution, 2018, 2, 936-943.	7.8	912
20	Anthropogenic disturbance homogenizes seagrass fish communities. Global Change Biology, 2018, 24, 1904-1918.	9.5	44
21	Energy Flux: The Link between Multitrophic Biodiversity and Ecosystem Functioning. Trends in Ecology and Evolution, 2018, 33, 186-197.	8.7	195
22	Prior heat accumulation reduces survival during subsequent experimental heat waves. Journal of Experimental Marine Biology and Ecology, 2018, 501, 109-117.	1.5	27
23	Latitude, temperature, and habitat complexity predict predation pressure in eelgrass beds across the Northern Hemisphere. Ecology, 2018, 99, 29-35.	3.2	70
24	Formâ€"function relationships in a marine foundation species depend on scale: a shoot to global perspective from a distributed ecological experiment. Oikos, 2018, 127, 364-374.	2.7	7
25	Epifaunal diversity patterns within and among seagrass meadows suggest landscapeâ€scale biodiversity processes. Ecosphere, 2018, 9, e02490.	2.2	28
26	Metabolic Theory and the Temperature-Size Rule Explain the Temperature Dependence of Population Carrying Capacity. American Naturalist, 2018, 192, 687-697.	2.1	88
27	Blue Carbon Storage Capacity of Temperate Eelgrass (<scp><i>Zostera marina</i></scp>) Meadows. Global Biogeochemical Cycles, 2018, 32, 1457-1475.	4.9	130
28	Nonlinear averaging of thermal experience predicts population growth rates in a thermally variable environment. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181076.	2.6	92
29	The metabolic theory of ecology and the cost of parasitism. PLoS Biology, 2018, 16, e2005628.	5.6	12
30	The strength of the biodiversity–ecosystem function relationship depends on spatial scale. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180038.	2.6	82
31	Linking the influence and dependence of people on biodiversity across scales. Nature, 2017, 546, 65-72.	27.8	474
32	Warming-Induced Changes to Body Size Stabilize Consumer-Resource Dynamics. American Naturalist, 2017, 189, 718-725.	2.1	29
33	A general biodiversity–function relationship is mediated by trophic level. Oikos, 2017, 126, 18-31.	2.7	112
34	Ecological and methodological drivers of species' distribution and phenology responses to climate change. Global Change Biology, 2016, 22, 1548-1560.	9.5	162
35	Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology, 2016, 97, 1949-1960.	3.2	224
36	Biodiversity mediates top–down control in eelgrass ecosystems: a global comparativeâ€experimental approach. Ecology Letters, 2015, 18, 696-705.	6.4	188

3

#	Article	IF	CITATIONS
37	Indirect effects of predators control herbivore richness and abundance in a benthic eelgrass (<i><scp>Z</scp>ostera marina</i>) mesograzer community. Journal of Animal Ecology, 2015, 84, 1092-1102.	2.8	18
38	The Body Size Dependence of Trophic Cascades. American Naturalist, 2015, 185, 354-366.	2.1	110
39	Consumer–plant interaction strength: importance of body size, density and metabolic biomass. Oikos, 2015, 124, 1274-1281.	2.7	30
40	Recent Trends in Local-Scale Marine Biodiversity Reflect Community Structure and Human Impacts. Current Biology, 2015, 25, 1938-1943.	3.9	121
41	Exploring the role of temperature in the ocean through metabolic scaling. Ecology, 2015, 96, 3126-3140.	3.2	71
42	A comparison of epifaunal invertebrate communities in native eelgrassZostera marinaand non-nativeZostera japonicaat Tsawwassen, BC. Marine Biology Research, 2015, 11, 564-571.	0.7	5
43	Top–down control by great blue herons <i>Ardea herodias</i> regulates seagrassâ€associated epifauna. Oikos, 2015, 124, 1492-1501.	2.7	22
44	Strengthening confidence in climate change impact science. Global Ecology and Biogeography, 2015, 24, 64-76.	5.8	45
45	American Pikas' (Ochotona princeps) Foraging Response to Hikers and Sensitivity to Heat in an Alpine Environment. Arctic, Antarctic, and Alpine Research, 2015, 47, 519-527.	1.1	6
46	Geographical limits to species-range shifts are suggested by climate velocity. Nature, 2014, 507, 492-495.	27.8	436
47	Increased temperature variation poses a greater risk to species than climate warming. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132612.	2.6	674
48	Linking Biodiversity and Ecosystem Services: Current Uncertainties and the Necessary Next Steps. BioScience, 2014, 64, 49-57.	4.9	285
49	A bioenergetic framework for the temperature dependence of trophic interactions. Ecology Letters, 2014, 17, 902-914.	6.4	268
50	Climate change impacts on connectivity in the ocean: Implications for conservation. Ecosphere, 2014, 5, 1-18.	2.2	77
51	Global imprint of climate change on marine life. Nature Climate Change, 2013, 3, 919-925.	18.8	1,602
52	Moving beyond the fished or farmed dichotomy. Marine Policy, 2013, 38, 369-374.	3.2	48
53	Does fish larval dispersal differ between high and low latitudes?. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130327.	2.6	60
54	Climate change and species interactions: beyond local communities. Annals of the New York Academy of Sciences, 2013, 1297, 98-111.	3.8	13

#	Article	IF	Citations
55	Climate change and marine life. Biology Letters, 2012, 8, 907-909.	2.3	60
56	Invasive Species Unchecked by Climateâ€"Response. Science, 2012, 335, 538-539.	12.6	3
57	A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature, 2012, 486, 105-108.	27.8	1,750
58	Advances in global change research require open science by individual researchers. Global Change Biology, 2012, 18, 2102-2110.	9.5	81
59	Toward a conceptual synthesis for climate change responses. Global Ecology and Biogeography, 2012, 21, 693-703.	5.8	74
60	The Pace of Shifting Climate in Marine and Terrestrial Ecosystems. Science, 2011, 334, 652-655.	12.6	1,062
61	The functional role of producer diversity in ecosystems. American Journal of Botany, 2011, 98, 572-592.	1.7	991
62	Community ecology in a warming world: The influence of temperature on interspecific interactions in marine systems. Journal of Experimental Marine Biology and Ecology, 2011, 400, 218-226.	1.5	361
63	Salt marsh stabilization affects algal primary producers at the marsh edge. Wetlands Ecology and Management, 2011, 19, 131-140.	1.5	11
64	Theoretical Predictions for How Temperature Affects the Dynamics of Interacting Herbivores and Plants. American Naturalist, 2011, 178, 626-638.	2.1	162
65	Sustainability and Global Seafood. Science, 2010, 327, 784-786.	12.6	388
66	Warming and Resource Availability Shift Food Web Structure and Metabolism. PLoS Biology, 2009, 7, e1000178.	5 . 6	377
67	Predator richness has no effect in a diverse marine food web. Journal of Animal Ecology, 2009, 78, 732-740.	2.8	40
68	Warming strengthens an herbivore–plant interaction. Ecology, 2009, 90, 388-398.	3.2	293
69	Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1266-1271.	7.1	749
70	Cascading effects of predator diversity and omnivory in a marine food web. Ecology Letters, 2005, 8, 1048-1056.	6.4	238
71	Ecological Synthesis and Its Role in Advancing Knowledge. BioScience, 0, , .	4.9	4