
Volker Sieber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/219399/publications.pdf Version: 2024-02-01

VOLKED SIERED

#	Article	IF	CITATIONS
1	Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nature Reviews Chemistry, 2019, 3, 442-458.	30.2	544
2	Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Frontiers in Microbiology, 2015, 6, 496.	3.5	409
3	Functional Expression of a Fungal Laccase in <i>Saccharomyces cerevisiae</i> by Directed Evolution. Applied and Environmental Microbiology, 2003, 69, 987-995.	3.1	254
4	Multienzyme Cascade Reactions—Status and Recent Advances. ACS Catalysis, 2018, 8, 2385-2396.	11.2	250
5	The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. Journal of Biotechnology, 2008, 134, 33-45.	3.8	238
6	Libraries of hybrid proteins from distantly related sequences. Nature Biotechnology, 2001, 19, 456-460.	17.5	226
7	Cellâ€Free Metabolic Engineering: Production of Chemicals by Minimized Reaction Cascades. ChemSusChem, 2012, 5, 2165-2172.	6.8	219
8	Selecting proteins with improved stability by a phage-based method. Nature Biotechnology, 1998, 16, 955-960.	17.5	192
9	Enzymatic cleavage of lignin β-O-4 aryl ether bonds via net internal hydrogen transfer. Green Chemistry, 2013, 15, 1373.	9.0	103
10	Enhanced fed-batch fermentation of 2,3-butanediol by Paenibacillus polymyxa DSM 365. Bioresource Technology, 2012, 124, 237-244.	9.6	99
11	In-vitro Selection of Highly Stabilized Protein Variants with Optimized Surface. Journal of Molecular Biology, 2001, 309, 717-726.	4.2	97
12	Photobiocatalytic decarboxylation for olefin synthesis. Chemical Communications, 2015, 51, 1918-1921.	4.1	97
13	Recent Advances in the Direct Synthesis of Hydrogen Peroxide Using Chemical Catalysis—A Review. Catalysts, 2018, 8, 379.	3.5	87
14	Bacterial Glycosyltransferases: Challenges and Opportunities of a Highly Diverse Enzyme Class Toward Tailoring Natural Products. Frontiers in Microbiology, 2016, 7, 182.	3.5	86
15	Systematics and genetic variation in commercial shape Kappaphycus and shape Eucheuma (Solieriaceae,) Tj ETQ	q1 <u>1</u> 0.78	4314 rgBT /(
16	Scleroglucan: biosynthesis, production and application of a versatile hydrocolloid. Applied Microbiology and Biotechnology, 2011, 91, 937-947.	3.6	85
17	A Modular Toolkit for Generating <i>Pichia pastoris</i> Secretion Libraries. ACS Synthetic Biology, 2017, 6, 1016-1025.	3.8	84
18	Solubilization of hemicellulose and lignin from wheat straw through microwave-assisted alkali treatment. Industrial Crops and Products, 2012, 39, 198-203.	5.2	83

#	Article	IF	CITATIONS
19	Activated carbon as catalyst support: precursors, preparation, modification and characterization. Beilstein Journal of Organic Chemistry, 2020, 16, 1188-1202.	2.2	81
20	Enzymatic Reduction of Nicotinamide Biomimetic Cofactors Using an Engineered Glucose Dehydrogenase: Providing a Regeneration System for Artificial Cofactors. ACS Catalysis, 2017, 7, 5202-5208.	11.2	74
21	A water-forming NADH oxidase from Lactobacillus pentosus suitable for the regeneration of synthetic biomimetic cofactors. Frontiers in Microbiology, 2015, 6, 957.	3.5	67
22	Interactions Contributing to the Formation of a β-Hairpin-like Structure in a Small Peptideâ€. Biochemistry, 1996, 35, 181-188.	2.5	63
23	In vitro metabolic engineering for the production of α-ketoglutarate. Metabolic Engineering, 2017, 40, 5-13.	7.0	60
24	Fast carbohydrate analysis via liquid chromatography coupled with ultra violet and electrospray ionization ion trap detection in 96-well format. Journal of Chromatography A, 2014, 1350, 44-50.	3.7	59
25	Identification of amino acid networks governing catalysis in the closed complex of class I terpene synthases. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E958-67.	7.1	57
26	Removal of monomer delignification products by laccase from Trametes versicolor. Bioresource Technology, 2012, 104, 298-304.	9.6	54
27	Controlled production of polysaccharides–exploiting nutrient supply for levan and heteropolysaccharide formation in Paenibacillus sp Carbohydrate Polymers, 2016, 148, 326-334.	10.2	53
28	Surface-exposed phenylalanines in the RNP1/RNP2 motif stabilize the cold-shock protein CspB fromBacillus subtilis. , 1998, 30, 401-406.		52
29	Enzymatic Decarboxylation—An Emerging Reaction for Chemicals Production from Renewable Resources. ChemCatChem, 2014, 6, 689-701.	3.7	52
30	Biosynthesis "debugged― Novel bioproduction strategies. Engineering in Life Sciences, 2013, 13, 4-18.	3.6	51
31	Methods to identify the unexplored diversity of microbial exopolysaccharides. Frontiers in Microbiology, 2015, 06, 565.	3.5	51
32	A comparison of genes involved in sphingan biosynthesis brought up to date. Applied Microbiology and Biotechnology, 2014, 98, 7719-7733.	3.6	47
33	Biobased chiral semi-crystalline or amorphous high-performance polyamides and their scalable stereoselective synthesis. Nature Communications, 2020, 11, 509.	12.8	47
34	High throughput exopolysaccharide screening platform: From strain cultivation to monosaccharide composition and carbohydrate fingerprinting in one day. Carbohydrate Polymers, 2015, 122, 212-220.	10.2	45
35	Reaction Design for the Compartmented Combination of Heterogeneous and Enzyme Catalysis. ACS Catalysis, 2016, 6, 6329-6334.	11.2	45
36	Tailor-made exopolysaccharides—CRISPR-Cas9 mediated genome editing in Paenibacillus polymyxa. Synthetic Biology, 2017, 2, ysx007.	2.2	45

#	Article	IF	CITATIONS
37	Biomimetic cofactors and methods for their recycling. Current Opinion in Chemical Biology, 2019, 49, 59-66.	6.1	45
38	Development of a lipase-mediated epoxidation process for monoterpenes in choline chloride-based deep eutectic solvents. Green Chemistry, 2017, 19, 2576-2586.	9.0	43
39	Novel CAD-like enzymes from Escherichia coli K-12 as additional tools in chemical production. Applied Microbiology and Biotechnology, 2013, 97, 5815-5824.	3.6	42
40	Production of dodecanedioic acid via biotransformation of low cost plant-oil derivatives using <i>Candida tropicalis</i> . Journal of Industrial Microbiology and Biotechnology, 2017, 44, 1491-1502.	3.0	41
41	Sequence Profile of the Parallel β Helix in the Pectate Lyase Superfamily. Journal of Structural Biology, 1998, 122, 223-235.	2.8	39
42	Electrochemical CO2 reduction to formate on indium catalysts prepared by electrodeposition in deep eutectic solvents. Electrochemistry Communications, 2020, 110, 106597.	4.7	39
43	Enzymatic Transformations Involved in the Biosynthesis of Microbial Exoâ€polysaccharides Based on the Assembly of Repeat Units. ChemBioChem, 2015, 16, 1141-1147.	2.6	38
44	Revealing the diversity of algal monosaccharides: Fast carbohydrate fingerprinting of microalgae using crude biomass and showcasing sugar distribution in Chlorella vulgaris by biomass fractionation. Algal Research, 2016, 17, 227-235.	4.6	37
45	Characterization of Biomimetic Cofactors According to Stability, Redox Potentials, and Enzymatic Conversion by NADH Oxidase from <i>Lactobacillus pentosus</i> . ChemBioChem, 2017, 18, 1944-1949.	2.6	35
46	Engineering of the 2,3-butanediol pathway of Paenibacillus polymyxa DSM 365. Metabolic Engineering, 2020, 61, 381-388.	7.0	35
47	Transcriptome sequencing and comparative transcriptome analysis of the scleroglucan producer Sclerotium rolfsii. BMC Genomics, 2010, 11, 329.	2.8	33
48	Improvement of thermostable aldehyde dehydrogenase by directed evolution for application in Synthetic Cascade Biomanufacturing. Enzyme and Microbial Technology, 2013, 53, 307-314.	3.2	33
49	Crystal structure of Mycobacterium tuberculosis ketolâ€acid reductoisomerase at 1.0 à resolution – a potential target for antiâ€tuberculosis drug discovery. FEBS Journal, 2016, 283, 1184-1196.	4.7	33
50	Epoxidation of α-pinene catalyzed by methyltrioxorhenium(VII): Influence of additives, oxidants and solvents. Journal of Molecular Catalysis A, 2011, 340, 9-14.	4.8	32
51	Effects of high-lignin-loading on thermal, mechanical, and morphological properties of bioplastic composites. Composite Structures, 2018, 189, 349-356.	5.8	32
52	Bioelectrocatalytic Cofactor Regeneration Coupled to CO ₂ Fixation in a Redoxâ€Active Hydrogel for Stereoselective Câ^'C Bond Formation. Angewandte Chemie - International Edition, 2021, 60, 21056-21061.	13.8	32
53	Circular dichroism of the parallel \hat{I}^2 helical proteins pectate lyase C and E. Proteins: Structure, Function and Bioinformatics, 1995, 23, 32-37.	2.6	31
54	Encapsulation of Living E. coli Cells in Hollow Polymer Microspheres of Highly Defined Size. Biomacromolecules, 2013, 14, 207-214.	5.4	31

#	Article	IF	CITATIONS
55	Metal Ions Play an Essential Catalytic Role in the Mechanism of Ketol–Acid Reductoisomerase. Chemistry - A European Journal, 2016, 22, 7427-7436.	3.3	30
56	Synthetic Methylotrophy in Yeasts: Towards a Circular Bioeconomy. Trends in Biotechnology, 2021, 39, 348-358.	9.3	30
57	Characterization and comparison of Porphyridium sordidum and Porphyridium purpureum concerning growth characteristics and polysaccharide production. Algal Research, 2020, 49, 101931.	4.6	29
58	Characterization of recombinantly expressed dihydroxy-acid dehydratase from Sulfobus solfataricus—A key enzyme for the conversion of carbohydrates into chemicals. Journal of Biotechnology, 2015, 211, 31-41.	3.8	28
59	Optimization of the lipase mediated epoxidation of monoterpenes using the design of experiments—Taguchi method. Process Biochemistry, 2016, 51, 1479-1485.	3.7	28
60	New Bioâ€Polyamides from Terpenes: αâ€Pinene and (+)â€3â€Carene as Valuable Resources for Lactam Production. Macromolecular Rapid Communications, 2019, 40, e1800903.	3.9	28
61	In-depth rheological characterization of genetically modified xanthan-variants. Carbohydrate Polymers, 2019, 213, 236-246.	10.2	28
62	Metabolic engineering for production of functional polysaccharides. Current Opinion in Biotechnology, 2020, 66, 44-51.	6.6	28
63	Rheological characterization of the exopolysaccharide Paenan in surfactant systems. Carbohydrate Polymers, 2018, 181, 719-726.	10.2	28
64	Selective epoxidation of (+)-limonene employing methyltrioxorhenium as catalyst. Journal of Molecular Catalysis A, 2012, 358, 159-165.	4.8	25
65	Lipase-catalyzed synthesis of sucrose monoester: Increased productivity by combining enzyme pretreatment and non-aqueous biphasic medium. Journal of Biotechnology, 2017, 259, 182-190.	3.8	25
66	Anodic production of hydrogen peroxide using commercial carbon materials. Applied Catalysis B: Environmental, 2022, 303, 120848.	20.2	25
67	Proside A Phage-Based Method for Selecting Thermostable Proteins. , 2003, 230, 57-70.		23
68	Mediated electron transfer with monooxygenases—Insight in interactions between reduced mediators and the co-substrate oxygen. Journal of Molecular Catalysis B: Enzymatic, 2014, 108, 51-58.	1.8	23
69	Optimization of a reduced enzymatic reaction cascade for the production of L-alanine. Scientific Reports, 2019, 9, 11754.	3.3	23
70	Colorimetric Determination of Sulfate via an Enzyme Cascade for High-Throughput Detection of Sulfatase Activity. Analytical Chemistry, 2018, 90, 2526-2533.	6.5	22
71	ChiBio: An Integrated Bio-refinery for Processing Chitin-Rich Bio-waste to Specialty Chemicals. Grand Challenges in Biology and Biotechnology, 2018, , 555-578.	2.4	22
72	Overall Nutritional and Sensory Profile of Different Species of Australian Wattle Seeds (Acacia spp.): Potential Food Sources in the Arid Semi-Arid Regions. Foods, 2019, 8, 482.	4.3	22

#	Article	IF	CITATIONS
73	Enabling the Direct Enzymatic Dehydration of <scp>d</scp> -Glycerate to Pyruvate as the Key Step in Synthetic Enzyme Cascades Used in the Cell-Free Production of Fine Chemicals. ACS Catalysis, 2020, 10, 3110-3118.	11.2	22
74	carba Nicotinamide Adenine Dinucleotide Phosphate: Robust Cofactor for Redox Biocatalysis. Angewandte Chemie - International Edition, 2021, 60, 14701-14706.	13.8	22
75	In Vitro Bioconversion of Pyruvate to n-Butanol with Minimized Cofactor Utilization. Frontiers in Bioengineering and Biotechnology, 2016, 4, 74.	4.1	21
76	A Bifunctional UDP-Sugar 4-Epimerase Supports Biosynthesis of Multiple Cell Surface Polysaccharides in Sinorhizobium meliloti. Journal of Bacteriology, 2019, 201, .	2.2	19
77	Novel Prokaryotic CRISPR-Cas12a-Based Tool for Programmable Transcriptional Activation and Repression. ACS Synthetic Biology, 2020, 9, 3353-3363.	3.8	19
78	Biocatalytic Synthesis of a Diketobornane as a Building Block for Bifunctional Camphor Derivatives. ChemCatChem, 2013, 5, 3351-3357.	3.7	18
79	Lipase-catalyzed interfacial polymerization of ï‰-pentadecalactone in aqueous biphasic medium: A mechanistic study. Journal of Molecular Catalysis B: Enzymatic, 2013, 88, 69-76.	1.8	18
80	Characterization of uronate dehydrogenases catalysing the initial step in an oxidative pathway. Microbial Biotechnology, 2015, 8, 633-643.	4.2	18
81	A one pot reaction cascade of in situ hydrogen peroxide production and lipase mediated in situ production of peracids for the epoxidation of monoterpenes. Journal of Molecular Catalysis B: Enzymatic, 2015, 114, 72-76.	1.8	18
82	Probing the adhesion properties of alginate hydrogels: a new approach towards the preparation of soft colloidal probes for direct force measurements. Soft Matter, 2017, 13, 578-589.	2.7	18
83	Chemoenzymatic Synthesis of a Novel Borneolâ€Based Polyester. ChemSusChem, 2017, 10, 3574-3580.	6.8	18
84	Preparation of Supported Palladium Catalysts using Deep Eutectic Solvents. Chemistry - A European Journal, 2017, 23, 12467-12470.	3.3	18
85	Lipase-mediated Epoxidation of the Cyclic Monoterpene Limonene to Limonene Oxide and Limonene Dioxide. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2012, 67, 1056-1060.	0.7	17
86	Enzymatic synthesis of amino sugar fatty acid esters. European Journal of Lipid Science and Technology, 2014, 116, 423-428.	1.5	17
87	Integrated biorefinery concept for grass silage using a combination of adapted pulping methods for advanced saccharification and extraction of lignin. Bioresource Technology, 2016, 216, 462-470.	9.6	17
88	Design of a synthetic enzyme cascade for the <i>in vitro</i> fixation of a C ₁ carbon source to a functional C ₄ sugar. Green Chemistry, 2021, 23, 6583-6590.	9.0	17
89	Improving the NADH-cofactor specificity of the highly active AdhZ3 and AdhZ2 from Escherichia coli K-12. Journal of Biotechnology, 2014, 189, 157-165.	3.8	16
90	Sequence Homology-Independent Protein Recombination (SHIPREC). , 2003, 231, 153-164.		15

#	Article	IF	CITATIONS
91	Toward one-pot lipase-catalyzed synthesis of poly(É›-caprolactone) particles in aqueous dispersion. Colloids and Surfaces B: Biointerfaces, 2014, 113, 254-260.	5.0	15
92	Editorial: Microbial Exopolysaccharides: From Genes to Applications. Frontiers in Microbiology, 2016, 7, 308.	3.5	15
93	A one-stage cultivation process for lipid- and carbohydrate-rich biomass of Scenedesmus obtusiusculus based on artificial and natural water sources. Bioresource Technology, 2016, 218, 498-504.	9.6	15
94	Structural elucidation of the fucose containing polysaccharide of Paenibacillus polymyxa DSM 365. Carbohydrate Polymers, 2022, 278, 118951.	10.2	15
95	Refolding of a Thermostable Glyceraldehyde Dehydrogenase for Application in Synthetic Cascade Biomanufacturing. PLoS ONE, 2013, 8, e70592.	2.5	14
96	Effects of glucose concentration on 1,18-cis-octadec-9-enedioic acid biotransformation efficiency and lipid body formation in Candida tropicalis. Scientific Reports, 2017, 7, 13842.	3.3	14
97	Rheology of sphingans in EPS–surfactant systems. Carbohydrate Polymers, 2020, 248, 116778.	10.2	14
98	Structureâ€Guided Engineering of αâ€Keto Acid Decarboxylase for the Production of Higher Alcohols at Elevated Temperature. ChemSusChem, 2018, 11, 3335-3344.	6.8	13
99	Molecular Dynamics Analysis of a Rationally Designed Aldehyde Dehydrogenase Gives Insights into Improved Activity for the Non-Native Cofactor NAD ⁺ . ACS Synthetic Biology, 2020, 9, 920-929.	3.8	13
100	Production of Propene from <i>n</i> â€Butanol: A Threeâ€6tep Cascade Utilizing the Cytochrome P450 Fatty Acid Decarboxylase OleT _{<i>JE</i>} . ChemBioChem, 2020, 21, 3273-3281.	2.6	13
101	Rheological characterization of Porphyridium sordidum and Porphyridium purpureum exopolysaccharides. Carbohydrate Polymers, 2021, 253, 117237.	10.2	13
102	Development of semi-continuous chemo-enzymatic terpene epoxidation: combination of anthraquinone autooxidation and the lipase-mediated epoxidation process. Reaction Chemistry and Engineering, 2017, 2, 885-895.	3.7	12
103	Thermostabilization of the uronate dehydrogenase from Agrobacterium tumefaciens by semi-rational design. AMB Express, 2017, 7, 103.	3.0	12
104	Biosynthesis of poly-3-hydroxybutyrate from grass silage by a two-stage fermentation process based on an integrated biorefinery concept. Bioresource Technology, 2018, 269, 237-245.	9.6	12
105	Converging conversion – using promiscuous biocatalysts for the cell-free synthesis of chemicals from heterogeneous biomass. Green Chemistry, 2021, 23, 3656-3663.	9.0	12
106	Molecular cloning and functional characterization of a two highly stereoselective borneol dehydrogenases from Salvia officinalis L. Phytochemistry, 2020, 172, 112227.	2.9	11
107	Automated Modular High Throughput Exopolysaccharide Screening Platform Coupled with Highly Sensitive Carbohydrate Fingerprint Analysis. Journal of Visualized Experiments, 2016, , .	0.3	10
108	Structures of Mixed-Tacticity Polyhydroxybutyrates. Macromolecules, 2018, 51, 5001-5010.	4.8	10

#	Article	IF	CITATIONS
109	Analysis of lignocellulose derived phenolic monomers by headspace solid-phase microextraction and gas chromatography. Journal of Chromatography A, 2013, 1307, 144-157.	3.7	9
110	Identification and characterization of two new 5-keto-4-deoxy-D-Glucarate Dehydratases/Decarboxylases. BMC Biotechnology, 2016, 16, 80.	3.3	9
111	Quantitative assay of β-(1,3)–β-(1,6)–glucans from fermentation broth using aniline blue. Carbohydrate Polymers, 2017, 174, 57-64.	10.2	9
112	Deacidification of grass silage press juice by continuous production of acetoin from its lactate via an immobilized enzymatic reaction cascade. Bioresource Technology, 2017, 245, 1084-1092.	9.6	9
113	Optimization of growth and EPS production in two Porphyridum strains. Bioresource Technology Reports, 2020, 11, 100486.	2.7	9
114	A Structural View on the Stereospecificity of Plant Borneol‶ype Dehydrogenases. ChemCatChem, 2021, 13, 2262-2277.	3.7	9
115	Hot Flows: Evolving an Archaeal Glucose Dehydrogenase for Ultrastable Carba-NADP ⁺ Using Microfluidics at Elevated Temperatures. ACS Catalysis, 2022, 12, 1841-1846.	11.2	9
116	Design of enzymatic cascade reactors through multi-objective dynamic optimization. Biochemical Engineering Journal, 2022, 181, 108384.	3.6	8
117	Bioelektrokatalytische Cofaktorâ€Regeneration und CO ₂ â€Fixierung in einem redoxaktiven Hydrogel durch stereoselektive Câ€Câ€Bindungsknüpfung. Angewandte Chemie, 2021, 133, 21224-21230.	2.0	7
118	Dataset on the structural characterization of organosolv lignin obtained from ensiled Poaceae grass and load-dependent molecular weight changes during thermoplastic processing. Data in Brief, 2018, 17, 647-652.	1.0	6
119	Screening of c-di-GMP-Regulated Exopolysaccharides in Host Interacting Bacteria. Methods in Molecular Biology, 2018, 1734, 263-275.	0.9	6
120	Substrate scope of a dehydrogenase from <i>Sphingomonas</i> species A1 and its potential application in the synthesis of rare sugars and sugar derivatives. Microbial Biotechnology, 2018, 11, 747-758.	4.2	6
121	Mechanical and Thermal Properties of Mixed-Tacticity Polyhydroxybutyrates and Their Association with Iso- and Atactic Chain Segment Length Distributions. Macromolecules, 2019, 52, 5407-5418.	4.8	6
122	To beat the heat – engineering of the most thermostable pyruvate decarboxylase to date. RSC Advances, 2019, 9, 29743-29746.	3.6	6
123	Simple Plugâ€In Synthetic Step for the Synthesis of (â^') amphor from Renewable Starting Materials. ChemBioChem, 2021, 22, 2951-2956.	2.6	6
124	Development of an Improved Peroxidase-Based High-Throughput Screening for the Optimization of D-Glycerate Dehydratase Activity. International Journal of Molecular Sciences, 2020, 21, 335.	4.1	6
125	Systematic optimization of exopolysaccharide production by Gluconacetobacter sp. and use of (crude) glycerol as carbon source. Carbohydrate Polymers, 2022, 276, 118769.	10.2	6
126	Structureâ€Guided Modulation of the Catalytic Properties of [2Feâ^'2S]â€Dependent Dehydratases. ChemBioChem, 2022, 23, .	2.6	6

#	Article	IF	CITATIONS
127	Towards a cyanobacterial biorefinery: Carbohydrate fingerprint, biocomposition and enzymatic hydrolysis of Nostoc biomass. Algal Research, 2022, 65, 102744.	4.6	6
128	Characterization of highly active 2-keto-3-deoxy-L-arabinonate and 2-keto-3-deoxy-D-xylonate dehydratases in terms of the biotransformation of hemicellulose sugars to chemicals. Applied Microbiology and Biotechnology, 2020, 104, 7023-7035.	3.6	5
129	Draft Genome Sequence of Kozakia baliensis SR-745, the First Sequenced <i>Kozakia</i> Strain from the Family <i>Acetobacteraceae</i> . Genome Announcements, 2014, 2, .	0.8	4
130	Sustainable Chemistry – An Interdisciplinary Matrix Approach. ChemSusChem, 2021, 14, 251-265.	6.8	4
131	Enhanced C2 and C3 Product Selectivity in Electrochemical CO2 Reduction on Carbon-Doped Copper Oxide Catalysts Prepared by Deep Eutectic Solvent Calcination. Catalysts, 2021, 11, 542.	3.5	4
132	carbaâ€Nicotinamidâ€Adeninâ€Dinukleotidâ€Phosphat: Robuster Cofaktor für die Redoxâ€Biokatalyse. Angewandte Chemie, 2021, 133, 14822-14828.	2.0	4
133	Development of a Cofactor Balanced, Multi Enzymatic Cascade Reaction for the Simultaneous Production of L-Alanine and L-Serine from 2-Keto-3-deoxy-gluconate. Catalysts, 2021, 11, 31.	3.5	4
134	Selection for Soluble Proteins via Fusion with Chloramphenicol Acetyltransferase. , 2003, 230, 45-56.		3
135	Pyrolysis of Deep Eutectic Solvents for the Preparation of Supported Copper Electrocatalysts. ChemistrySelect, 2020, 5, 11714-11720.	1.5	3
136	Engineering of a borneol dehydrogenase from P. putida for the enzymatic resolution of camphor. Applied Microbiology and Biotechnology, 2021, 105, 3159-3167.	3.6	3
137	Crystallization behaviour of glyceraldehyde dehydrogenase from <i>Thermoplasma acidophilum</i> . Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 1475-1480.	0.8	1
138	Land and sea: Addressing the challenges facing inter-regional ecosystems in developing a sustainable bioeconomy. EFB Bioeconomy Journal, 2021, 1, 100017.	2.4	1
139	Effect of biotechnologically modified alginates on LDH structures. Bioinspired, Biomimetic and Nanobiomaterials, 2015, 4, 174-186.	0.9	1
140	Biochemie 2009. Nachrichten Aus Der Chemie, 2010, 58, 300-313.	0.0	0
141	Crystallization and structural characterization of glyceraldehyde dehydrogenase fromThermoplasma acidophilum. Acta Crystallographica Section A: Foundations and Advances, 2015, 71, s222-s223.	0.1	0
142	Draft Genome Sequence of Lysinibacillus xylanilyticus SR-86. Genome Announcements, 2016, 4, .	0.8	0
143	The Bacterial Glycome: From Monomers to Complex Carbohydrate Polymers. , 2019, , .		0
144	Titelbild: Bioelektrokatalytische Cofaktorâ€Regeneration und CO ₂ â€Fixierung in einem redoxaktiven Hydrogel durch stereoselektive Câ€Câ€Bindungsknüpfung (Angew. Chem. 38/2021). Angewandte Chemie, 2021, 133, 20733-20733.	2.0	0

#	Article	IF	CITATIONS
145	A novel approach to study cellulose digestion kinetics in biogas fermentation applying feed-stop method and artificial medium to investigate effects of saccharides. Bioresource Technology Reports, 2021, 15, 100757.	2.7	Ο
146	Effects of Selected Yeast Extract Compounds on 2,3-Butanediol Production by Paenibacillus polymyxa DSM 365. Current Biotechnology, 2014, 3, 157-165.	0.4	0
147	Water Oxidation to Hydrogen Peroxide on Carbonaceous Materials. ECS Meeting Abstracts, 2022, MA2022-01, 1793-1793.	0.0	0