Peter F Weller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2193734/publications.pdf

Version: 2024-02-01

28274 36028 9,895 130 55 97 citations h-index g-index papers 134 134 134 7936 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Immature eosinophils., 2022,, 253-286.		O
2	Mature eosinophils: General morphology. , 2022, , 7-60.		0
3	Eosinophil-associated diseases (EADs). , 2022, , 289-394.		0
4	Eosinophil cell death. , 2022, , 207-252.		0
5	Eosinophil activation. , 2022, , 107-157.		0
6	Subcellular localization of immune mediators and other proteins., 2022,, 159-206.		0
7	Eosinophils as secretory cells. , 2022, , 61-105.		0
8	Ultrastructure of mouse eosinophils. , 2022, , 397-473.		0
9	Mitochondrial Population in Mouse Eosinophils: Ultrastructural Dynamics in Cell Differentiation and Inflammatory Diseases. Frontiers in Cell and Developmental Biology, 2022, 10, 836755.	3.7	6
10	In Reply—Are Eosinophils Needed for Normal Health?. Mayo Clinic Proceedings, 2022, 97, 805-807.	3.0	1
11	How to detect eosinophil ETosis (EETosis) and extracellular traps. Allergology International, 2021, 70, 19-29.	3.3	44
12	Eosinophil ETosis–Mediated Release of Galectinâ€10 in Eosinophilic Granulomatosis With Polyangiitis. Arthritis and Rheumatology, 2021, 73, 1683-1693.	5.6	38
13	Eosinophils in Health and Disease: A State-of-the-Art Review. Mayo Clinic Proceedings, 2021, 96, 2694-2707.	3.0	103
14	Galectin-10, the protein that forms Charcot-Leyden crystals, is not stored in granules but resides in the peripheral cytoplasm of human eosinophils. Journal of Leukocyte Biology, 2020, 108, 139-149.	3.3	38
15	The Charcot–Leyden crystal protein revisited—A lysopalmitoylphospholipase and more. Journal of Leukocyte Biology, 2020, 108, 105-112.	3.3	13
16	Pulmonary Eosinophilic Granulomatosis with Polyangiitis Has IgG4 Plasma Cells and Immunoregulatory Features. American Journal of Pathology, 2020, 190, 1438-1448.	3.8	7
17	Donald J. Krogstad, MD (1943-2020), Physician-Scientist, Malaria Researcher, and Mentor. American Journal of Tropical Medicine and Hygiene, 2020, 103, 1748-1749.	1.4	0
18	Donald J. Krogstad, MD (1943–2020), Physician-Scientist, Malaria Researcher, and Mentor. American Journal of Tropical Medicine and Hygiene, 2020, 103, 1748-1749.	1.4	0

#	Article	IF	CITATIONS
19	Evaluation of clinical benefit from treatment with mepolizumab for patients with eosinophilic granulomatosis with polyangiitis. Journal of Allergy and Clinical Immunology, 2019, 143, 2170-2177.	2.9	82
20	Rho and Rac, but not <scp>ROCK</scp> , are required for secretion of human and mouse eosinophilâ€associated <scp>RN</scp> ases. Clinical and Experimental Allergy, 2019, 49, 190-198.	2.9	3
21	Charcot-Leyden Crystals in Eosinophilic Inflammation: Active Cytolysis Leads to Crystal Formation. Current Allergy and Asthma Reports, 2019, 19, 35.	5.3	50
22	Eosinophils and Eosinophilia. , 2019, , 349-361.e1.		3
23	Revisiting the NIH Taskforce on the Research needs of Eosinophil-Associated Diseases (RE-TREAD). Journal of Leukocyte Biology, 2018, 104, 69-83.	3.3	34
24	Identification of Piecemeal Degranulation and Vesicular Transport of MBP-1 in Liver-Infiltrating Mouse Eosinophils During Acute Experimental Schistosoma mansoni Infection. Frontiers in Immunology, 2018, 9, 3019.	4.8	18
25	Leptin Elicits LTC4 Synthesis by Eosinophils Mediated by Sequential Two-Step Autocrine Activation of CCR3 and PGD2 Receptors. Frontiers in Immunology, 2018, 9, 2139.	4.8	19
26	Charcot-Leyden crystal formation is closely associated with eosinophil extracellular trap cell death. Blood, 2018, 132, 2183-2187.	1.4	125
27	Single-Cell Analyses of Human Eosinophils at High Resolution to Understand Compartmentalization and Vesicular Trafficking of Interferon-Gamma. Frontiers in Immunology, 2018, 9, 1542.	4.8	15
28	Contemporary understanding of the secretory granules in human eosinophils. Journal of Leukocyte Biology, 2018, 104, 85-93.	3.3	77
29	Schistosomal Lipids Activate Human Eosinophils via Toll-Like Receptor 2 and PGD2 Receptors: 15-LO Role in Cytokine Secretion. Frontiers in Immunology, 2018, 9, 3161.	4.8	26
30	EicosaCell: An Imaging-Based Assay to Identify Spatiotemporal Eicosanoid Synthesis. Methods in Molecular Biology, 2017, 1554, 127-141.	0.9	11
31	Mepolizumab or Placebo for Eosinophilic Granulomatosis with Polyangiitis. New England Journal of Medicine, 2017, 376, 1921-1932.	27.0	682
32	Functions of tissue-resident eosinophils. Nature Reviews Immunology, 2017, 17, 746-760.	22.7	376
33	Extracellular Microvesicle Production by Human Eosinophils Activated by "Inflammatory―Stimuli. Frontiers in Cell and Developmental Biology, 2016, 4, 117.	3.7	30
34	Eosinophil ETosis and DNA Traps: a New Look at Eosinophilic Inflammation. Current Allergy and Asthma Reports, 2016, 16, 54.	5.3	91
35	CD63 is tightly associated with intracellular, secretory events chaperoning piecemeal degranulation and compound exocytosis in human eosinophils. Journal of Leukocyte Biology, 2016, 100, 391-401.	3.3	52
36	Vesicular trafficking of immune mediators in human eosinophils revealed by immunoelectron microscopy. Experimental Cell Research, 2016, 347, 385-390.	2.6	17

3

#	Article	IF	Citations
37	Eosinophilia. Primary Care - Clinics in Office Practice, 2016, 43, 607-617.	1.6	109
38	Lipid droplets in leukocytes: Organelles linked to inflammatory responses. Experimental Cell Research, 2016, 340, 193-197.	2.6	67
39	Eosinophil extracellular trap cell death–derived DNA traps: Their presence in secretions and functional attributes. Journal of Allergy and Clinical Immunology, 2016, 137, 258-267.	2.9	191
40	LEUKOCYTE LIPID BODIES - STRUCTURE AND FUNCTION AS "EICOSASOMES". Transactions of the American Clinical and Climatological Association, 2016, 127, 328-340.	0.5	19
41	The transcription factor XBP1 is selectively required for eosinophil differentiation. Nature Immunology, 2015, 16, 829-837.	14.5	154
42	Spectrum of Eosinophilic End-Organ Manifestations. Immunology and Allergy Clinics of North America, 2015, 35, 403-411.	1.9	53
43	Expression and subcellular localization of the Qa-SNARE syntaxin17 in human eosinophils. Experimental Cell Research, 2015, 337, 129-135.	2.6	13
44	Purinergic P2Y12 Receptor Activation in Eosinophils and the Schistosomal Host Response. PLoS ONE, 2015, 10, e0139805.	2.5	22
45	Eosinophil Secretion of Granule-Derived Cytokines. Frontiers in Immunology, 2014, 5, 496.	4.8	105
46	Unraveling the complexity of lipid body organelles in human eosinophils. Journal of Leukocyte Biology, 2014, 96, 703-712.	3.3	32
47	Human Eosinophil Leukocytes Express Protein Disulfide Isomerase in Secretory Granules and Vesicles. Journal of Histochemistry and Cytochemistry, 2014, 62, 450-459.	2.5	14
48	Pre-embedding immunogold labeling to optimize protein localization at subcellular compartments and membrane microdomains of leukocytes. Nature Protocols, 2014, 9, 2382-2394.	12.0	66
49	Eosinophilia in Mast Cell Disease. Immunology and Allergy Clinics of North America, 2014, 34, 357-364.	1.9	28
50	Eosinophil extracellular DNA trap cell death mediates lytic release of free secretion-competent eosinophil granules in humans. Blood, 2013, 121, 2074-2083.	1.4	252
51	The Internal Architecture of Leukocyte Lipid Body Organelles Captured by Three-Dimensional Electron Microscopy Tomography. PLoS ONE, 2013, 8, e59578.	2.5	27
52	Eosinophils and eosinophilia., 2013,, 298-309.		4
53	CCL11 elicits secretion of RNases from mouse eosinophils and their cellâ€free granules. FASEB Journal, 2012, 26, 2084-2093.	0.5	43
54	MHC Class II and CD9 in Human Eosinophils Localize to Detergent-Resistant Membrane Microdomains. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 188-195.	2.9	28

#	Article	IF	Citations
55	Eosinophilic Pneumonias. Clinical Microbiology Reviews, 2012, 25, 649-660.	13.6	90
56	Eosinophils and Disease Pathogenesis. Seminars in Hematology, 2012, 49, 113-119.	3.4	68
57	Contemporary consensus proposal on criteria and classification of eosinophilic disorders and related syndromes. Journal of Allergy and Clinical Immunology, 2012, 130, 607-612.e9.	2.9	604
58	Eosinophil crystalloid granules: structure, function, and beyond. Journal of Leukocyte Biology, 2012, 92, 281-288.	3.3	66
59	Novel targeted therapies for eosinophilic disorders. Journal of Allergy and Clinical Immunology, 2012, 130, 563-571.	2.9	90
60	Pathogenesis and classification of eosinophil disorders: a review of recent developments in the field. Expert Review of Hematology, 2012, 5, 157-176.	2.2	140
61	Imaging Lipid Bodies Within Leukocytes with Different Light Microscopy Techniques. Methods in Molecular Biology, 2011, 689, 149-161.	0.9	44
62	Lipid Bodies in Inflammatory Cells. Journal of Histochemistry and Cytochemistry, 2011, 59, 540-556.	2.5	137
63	Eosinophils: Offenders or General Bystanders in Allergic Airway Disease and Pulmonary Immunity?. Journal of Innate Immunity, 2011, 3, 113-119.	3.8	35
64	Eosinophils as a Novel Cell Source of Prostaglandin D2: Autocrine Role in Allergic Inflammation. Journal of Immunology, 2011, 187, 6518-6526.	0.8	82
65	EicosaCell – An Immunofluorescent-Based Assay to Localize Newly Synthesized Eicosanoid Lipid Mediators at Intracellular Sites. Methods in Molecular Biology, 2011, 689, 163-181.	0.9	21
66	Contributions of Electron Microscopy to Understand Secretion of Immune Mediators by Human Eosinophils. Microscopy and Microanalysis, 2010, 16, 653-660.	0.4	28
67	Eosinophils and Th2 immunity: contemporary insights. Immunology and Cell Biology, 2010, 88, 250-256.	2.3	150
68	Cysteinyl leukotrienes acting via granule membrane-expressed receptors elicit secretion from within cell-free human eosinophil granules. Journal of Allergy and Clinical Immunology, 2010, 125, 477-482.	2.9	77
69	Practical approach to the patient with hypereosinophilia. Journal of Allergy and Clinical Immunology, 2010, 126, 39-44.	2.9	242
70	Piecemeal degranulation in human eosinophils: a distinct secretion mechanism underlying inflammatory responses. Histology and Histopathology, 2010, 25, 1341-54.	0.7	61
71	Human eosinophils constitutively express multiple Th1, Th2, and immunoregulatory cytokines that are secreted rapidly and differentially. Journal of Leukocyte Biology, 2009, 85, 117-123.	3.3	216
72	A new paradigm for eosinophil granule-dependent secretion. Communicative and Integrative Biology, 2009, 2, 482-484.	1.4	2

#	Article	IF	Citations
73	Subcellular fractionation of human eosinophils: Isolation of functional specific granules on isoosmotic density gradients. Journal of Immunological Methods, 2009, 344, 64-72.	1.4	30
74	Vesicle-mediated secretion of human eosinophil granule-derived major basic protein. Laboratory Investigation, 2009, 89, 769-781.	3.7	72
75	Functional extracellular eosinophil granules: novel implications in eosinophil immunobiology. Current Opinion in Immunology, 2009, 21, 694-699.	5. 5	67
76	Leukocyte lipid bodies — Biogenesis and functions in inflammation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 540-551.	2.4	204
77	Mature human eosinophils express functional Notch ligands mediating eosinophil autocrine regulation. Blood, 2009, 113, 3092-3101.	1.4	39
78	Electron tomography and immunonanogold electron microscopy for investigating intracellular trafficking and secretion in human eosinophils. Journal of Cellular and Molecular Medicine, 2008, 12, 1416-1419.	3.6	14
79	Mechanisms of eosinophil secretion: large vesiculotubular carriers mediate transport and release of granule-derived cytokines and other proteins. Journal of Leukocyte Biology, 2008, 83, 229-236.	3.3	101
80	Pivotal Advance: Eosinophils mediate early alum adjuvant-elicited B cell priming and IgM production. Journal of Leukocyte Biology, 2008, 83, 817-821.	3.3	96
81	Eosinophil granules function extracellularly as receptor-mediated secretory organelles. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18478-18483.	7.1	120
82	The immunobiology of eosinophils—it's a whole new world out there: an interview with Dr. Peter F. Weller. Journal of Leukocyte Biology, 2008, 83, 822-823.	3.3	2
83	Eosinophils and eosinophilia. , 2008, , 361-374.		O
84	Airway Eosinophils: Allergic Inflammation Recruited Professional Antigen-Presenting Cells. Journal of Immunology, 2007, 179, 7585-7592.	0.8	161
85	Roles and origins of leukocyte lipid bodies: proteomic and ultrastructural studies. FASEB Journal, 2007, 21, 167-178.	0.5	178
86	Leukocyte lipid bodies: inflammation-related organelles are rapidly detected by wet scanning electron microscopy. Journal of Lipid Research, 2006, 47, 2589-2594.	4.2	18
87	Cutting Edge: Prostaglandin D2 Enhances Leukotriene C4 Synthesis by Eosinophils during Allergic Inflammation: Synergistic In Vivo Role of Endogenous Eotaxin. Journal of Immunology, 2006, 176, 1326-1330.	0.8	54
88	Cytokine receptor-mediated trafficking of preformed IL-4 in eosinophils identifies an innate immune mechanism of cytokine secretion. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3333-3338.	7.1	119
89	Intragranular Vesiculotubular Compartments are Involved in Piecemeal Degranulation by Activated Human Eosinophils. Traffic, 2005, 6, 866-879.	2.7	90
90	Human Eosinophils Secrete Preformed, Granule-Stored Interleukin-4 Through Distinct Vesicular Compartments. Traffic, 2005, 6, 1047-1057.	2.7	87

#	Article	IF	CITATIONS
91	Allergic Challenge–Elicited Lipid Bodies CompartmentalizeIn VivoLeukotriene C4Synthesis within Eosinophils. American Journal of Respiratory Cell and Molecular Biology, 2005, 33, 254-261.	2.9	56
92	Activated Human Eosinophils. International Archives of Allergy and Immunology, 2005, 138, 347-349.	2.1	18
93	Anti-allergic properties of the bromeliaceae Nidularium procerum: Inhibition of eosinophil activation and influx. International Immunopharmacology, 2005, 5, 1966-1974.	3.8	14
94	Case 4-2005. New England Journal of Medicine, 2005, 352, 609-615.	27.0	22
95	Mechanisms of eosinophil cytokine release. Memorias Do Instituto Oswaldo Cruz, 2005, 100, 73-81.	1.6	44
96	EliCell assay for the detection of released cytokines from eosinophils. Journal of Immunological Methods, 2003, 276, 227-237.	1.4	23
97	Eosinophils and cysteinyl leukotrienes. Prostaglandins Leukotrienes and Essential Fatty Acids, 2003, 69, 135-143.	2.2	75
98	Activation of human eosinophils through leukocyte immunoglobulin-like receptor 7. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1174-1179.	7.1	86
99	IL-16 Promotes Leukotriene C4 and IL-4 Release from Human Eosinophils via CD4- and Autocrine CCR3-Chemokine-Mediated Signaling. Journal of Immunology, 2002, 168, 4756-4763.	0.8	71
100	Intracrine Cysteinyl Leukotriene Receptor–mediated Signaling of Eosinophil Vesicular Transport–mediated Interleukin-4 Secretion. Journal of Experimental Medicine, 2002, 196, 841-850.	8.5	82
101	Lipopolysaccharide-Induced Leukocyte Lipid Body Formation In Vivo: Innate Immunity Elicited Intracellular Loci Involved in Eicosanoid Metabolism. Journal of Immunology, 2002, 169, 6498-6506.	0.8	129
102	The cellular biology of eosinophil eicosanoid formation and function. Journal of Allergy and Clinical Immunology, 2002, 109, 393-400.	2.9	105
103	Induction of endothelial cell cytoplasmic lipid bodies during hypoxia. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H294-H301.	3.2	27
104	Ultrastructural immunolocalization of basic fibroblast growth factor to lipid bodies and secretory granules in human mast cells. The Histochemical Journal, 2001, 33, 397-402.	0.6	19
105	Extranuclear Lipid Bodies, Elicited by CCR3-mediated Signaling Pathways, Are the Sites of Chemokine-enhanced Leukotriene C4 Production in Eosinophils and Basophils. Journal of Biological Chemistry, 2001, 276, 22779-22787.	3.4	114
106	Eotaxins. American Journal of Respiratory Cell and Molecular Biology, 2001, 24, 653-657.	2.9	59
107	Cutting Edge: Eotaxin Elicits Rapid Vesicular Transport-Mediated Release of Preformed IL-4 from Human Eosinophils. Journal of Immunology, 2001, 166, 4813-4817.	0.8	89
108	Ultrastructural Localization of Vesicle-associated Membrane Protein(s) to Specialized Membrane Structures in Human Pericytes, Vascular Smooth Muscle Cells, Endothelial Cells, Neutrophils, and Eosinophils. Journal of Histochemistry and Cytochemistry, 2001, 49, 293-304.	2.5	37

#	Article	IF	Citations
109	EliCell: a gel-phase dual antibody capture and detection assay to measure cytokine release from eosinophils. Journal of Immunological Methods, 2000, 244, 105-115.	1.4	34
110	Phosphatidylinositide 3-kinase localizes to cytoplasmic lipid bodies in human polymorphonuclear leukocytes and other myeloid-derived cells. Blood, 2000, 95, 1078-1085.	1.4	114
111	Lymph node trafficking and antigen presentation by endobronchial eosinophils. Journal of Clinical Investigation, 2000, 105, 945-953.	8.2	282
112	Cytoplasmic Lipid Bodies in Eosinophils: Central Roles in Eicosanoid Generation. International Archives of Allergy and Immunology, 1999, 118, 450-452.	2.1	54
113	Pathways for eosinophil lipid body induction: differing signal transduction in cells from normal and hypereosinophilic subjects. Journal of Leukocyte Biology, 1998, 64, 563-569.	3.3	61
114	Expression of Vascular Endothelial Growth Factor by Human Eosinophils: Upregulation by Granulocyte Macrophage Colony-stimulating Factor and Interleukin-5. American Journal of Respiratory Cell and Molecular Biology, 1997, 17, 70-77.	2.9	197
115	Eosinophil Lipid Bodies: Specific, Inducible Intracellular Sites for Enhanced Eicosanoid Formation. Journal of Experimental Medicine, 1997, 186, 909-920.	8.5	197
116	Localization of Granule Proteins in Human Eosinophil Bone Marrow Progenitors. International Archives of Allergy and Immunology, 1997, 114, 130-138.	2.1	23
117	Measurement of Interleukin 16. Current Protocols in Immunology, 1997, 22, Unit 6.23.	3.6	2
118	Human eosinophil-lymphocyte interactions. Memorias Do Instituto Oswaldo Cruz, 1997, 92, 173-182.	1.6	8
119	Human Eosinophils Release the Lymphocyte and Eosinophil Active Cytokines, RANTES and Lymphocyte Chemoattractant Factor. International Archives of Allergy and Immunology, 1995, 107, 342-342.	2.1	21
120	Expression of $\hat{l}\pm4\hat{l}^27$ Integrin on Eosinophils and Modulation of $\hat{l}\pm4$ -Integrin-Mediated Eosinophil Adhesion via CD4. International Archives of Allergy and Immunology, 1995, 107, 343-344.	2.1	14
121	Prostaglandin Endoperoxide Synthase (Cyclooxygenase): Ultrastructural Localization to Nonmembrane-Bound Cytoplasmic Lipid Bodies in Human Eosinophils and 3T3 Fibroblasts. International Archives of Allergy and Immunology, 1994, 105, 245-250.	2.1	70
122	Arylsulfatase B Is Present in Crystalloid-Containing Granules of Human Eosinophil Granulocytes. International Archives of Allergy and Immunology, 1994, 104, 207-210.	2.1	7
123	Mechanisms of Eosinophil Recruitment. American Journal of Respiratory Cell and Molecular Biology, 1993, 8, 349-355.	2.9	256
124	Intercellular Interactions in the Recruitment and Functions of Human Eosinophils. Annals of the New York Academy of Sciences, 1992, 664, 116-125.	3.8	2
125	Growth in acidic media increases production of phosphatidylinositol-specific phospholipase C byStaphylococcus aureus. Current Microbiology, 1992, 25, 125-128.	2.2	5
126	Release of Prostaglandin E2 by Microfilariae of Wuchereria bancrofti and Brugia malayi. American Journal of Tropical Medicine and Hygiene, 1992, 46, 520-523.	1.4	53

#	Article	IF	CITATIONS
127	The Immunobiology of Eosinophils. New England Journal of Medicine, 1991, 324, 1110-1118.	27.0	597
128	[31] Human eosinophil lysophospholipase. Methods in Enzymology, 1988, 163, 31-43.	1.0	6
129	Eosinophil Granule Cationic Proteins: Major Basic Protein Is Distinct From the Smaller Subunit of Eosinophil Peroxidase. Journal of Leukocyte Biology, 1988, 43, 1-4.	3.3	16
130	In Vivo ETosis of Human Eosinophils: The Ultrastructural Signature Captured by TEM in Eosinophilic Diseases. Frontiers in Immunology, 0, 13, .	4.8	10