Parameswara Rao Chinnam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/219369/publications.pdf

Version: 2024-02-01

23 685 14 papers citations h-index

23

docs citations

h-index g-index

23
times ranked citing authors

22

23 all docs

#	Article	IF	CITATIONS
1	Unlocking Failure Mechanisms and Improvement of Practical Li–S Pouch Cells through In Operando Pressure Study. Advanced Energy Materials, 2022, 12, .	19.5	12
2	Unlocking Failure Mechanisms and Improvement of Practical Li–S Pouch Cells through In Operando Pressure Study (Adv. Energy Mater. 7/2022). Advanced Energy Materials, 2022, 12, .	19.5	2
3	A Comprehensive Understanding of the Aging Effects of Extreme Fast Charging on High Ni NMC Cathode. Advanced Energy Materials, 2022, 12, .	19.5	32
4	Carbon-Binder Weight Loading Optimization for Improved Lithium-Ion Battery Rate Capability. Journal of the Electrochemical Society, 2022, 169, 070519.	2.9	7
5	A Review of Existing and Emerging Methods for Lithium Detection and Characterization in Liâ€lon and Liâ€Metal Batteries. Advanced Energy Materials, 2021, 11, 2100372.	19.5	114
6	Fast-Charging Aging Considerations: Incorporation and Alignment of Cell Design and Material Degradation Pathways. ACS Applied Energy Materials, 2021, 4, 9133-9143.	5.1	21
7	Extended cycle life implications of fast charging for lithium-ion battery cathode. Energy Storage Materials, 2021, 41, 656-666.	18.0	50
8	Gel Electrolyte Comprising Solvate Ionic Liquid and Methyl Cellulose. ACS Applied Energy Materials, 2020, 3, 279-289.	5.1	22
9	Effect of Artificial SEI Content on Lithium Metal Anode Morphology and Performance. ECS Meeting Abstracts, 2020, MA2020-02, 151-151.	0.0	0
10	An alternative route to single ion conductivity using multi-ionic salts. Materials Horizons, 2018, 5, 461-473.	12.2	24
11	Unravelling the structural and dynamical complexity of the equilibrium liquid grain-binding layer in highly conductive organic crystalline electrolytes. Journal of Materials Chemistry A, 2018, 6, 4394-4404.	10.3	6
12	Systematic Doping of Cobalt into Layered Manganese Oxide Sheets Substantially Enhances Water Oxidation Catalysis. Inorganic Chemistry, 2018, 57, 557-564.	4.0	43
13	Crystal structure and ionic conductivity of the soft solid crystal: isoquinoline3•(LiCl)2. Ionics, 2018, 24, 343-349.	2.4	5
14	Engineered Interfaces in Hybrid Ceramic–Polymer Electrolytes for Use in All-Solid-State Li Batteries. ACS Energy Letters, 2017, 2, 134-138.	17.4	75
15	Highly Durable, Self-Standing Solid-State Supercapacitor Based on an Ionic Liquid-Rich Ionogel and Porous Carbon Nanofiber Electrodes. ACS Applied Materials & Samp; Interfaces, 2017, 9, 33749-33757.	8.0	55
16	A Selfâ€Binding, Melt astable, Crystalline Organic Electrolyte for Sodium Ion Conduction. Angewandte Chemie, 2016, 128, 15480-15483.	2.0	6
17	Multi-ionic lithium salts increase lithium ion transference numbers in ionic liquid gel separators. Journal of Materials Chemistry A, 2016, 4, 14380-14391.	10.3	15
18	A Selfâ€Binding, Melt astable, Crystalline Organic Electrolyte for Sodium Ion Conduction. Angewandte Chemie - International Edition, 2016, 55, 15254-15257.	13.8	21

#	Article	IF	CITATIONS
19	Lamellar, micro-phase separated blends of methyl cellulose and dendritic polyethylene glycol, POSS-PEG. Carbohydrate Polymers, 2016, 136, 19-29.	10.2	12
20	Bulk-Phase Ion Conduction in Cocrystalline LiCl· <i>N</i> , <i>N</i> -Dimethylformamide: A New Paradigm for Solid Electrolytes Based upon the Pearson Hard–Soft Acid–Base Concept. Chemistry of Materials, 2015, 27, 5479-5482.	6.7	19
21	The polyoctahedral silsesquioxane (POSS) 1,3,5,7,9,11,13,15-octaphenylpentacyclo[9.5.1.1 ^{3,9} .1 ^{5,15} .1 ^{7,13}]octasilo(octaphenyl-POSS). Acta Crystallographica Section C, Structural Chemistry, 2014, 70, 971-974.	OX O TTE	8
22	Self-assembled Janus-like multi-ionic lithium salts form nano-structured solid polymer electrolytes with high ionic conductivity and Li ⁺ ion transference number. Journal of Materials Chemistry A, 2013, 1, 1731-1739.	10.3	54
23	Polyoctahedral Silsesquioxane-Nanoparticle Electrolytes for Lithium Batteries: POSS-Lithium Salts and POSS-PEGs. Chemistry of Materials, 2011, 23, 5111-5121.	6.7	82