Christopher Southan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2193484/publications.pdf

Version: 2024-02-01

126 papers 16,460 citations

53 h-index 117 g-index

151 all docs

151 docs citations

151 times ranked

19406 citing authors

#	Article	IF	CITATIONS
1	The IUPHAR/BPS Guide to PHARMACOLOGY in 2018: updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY. Nucleic Acids Research, 2018, 46, D1091-D1106.	14.5	1,584
2	The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. Nucleic Acids Research, 2016, 44, D1054-D1068.	14.5	1,075
3	Identification of a Novel Aspartic Protease (Asp 2) as \hat{l}^2 -Secretase. Molecular and Cellular Neurosciences, 1999, 14, 419-427.	2.2	1,056
4	The IUPHAR/BPS Guide to PHARMACOLOGY: an expert-driven knowledgebase of drug targets and their ligands. Nucleic Acids Research, 2014, 42, D1098-D1106.	14.5	826
5	The HtrA Family of Proteases. Molecular Cell, 2002, 10, 443-455.	9.7	597
6	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Enzymes. British Journal of Pharmacology, 2017, 174, S272-S359.	5.4	597
7	Endothelin. Pharmacological Reviews, 2016, 68, 357-418.	16.0	574
8	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: G proteinâ€coupled receptors. British Journal of Pharmacology, 2017, 174, S17-S129.	5.4	557
9	The Concise Guide to PHARMACOLOGY 2015/16: Enzymes. British Journal of Pharmacology, 2015, 172, 6024-6109.	5.4	521
10	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G proteinâ€coupled receptors. British Journal of Pharmacology, 2019, 176, S21-S141.	5.4	519
11	The Concise Guide to PHARMACOLOGY 2015/16: G proteinâ€coupled receptors. British Journal of Pharmacology, 2015, 172, 5744-5869.	5.4	507
12	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Enzymes. British Journal of Pharmacology, 2019, 176, S297-S396.	5.4	423
13	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G proteinâ€coupled receptors. British Journal of Pharmacology, 2021, 178, S27-S156.	5.4	337
14	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Enzymes. British Journal of Pharmacology, 2021, 178, S313-S411.	5.4	320
15	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Introduction and Other Protein Targets. British Journal of Pharmacology, 2019, 176, S1-S20.	5.4	295
16	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Overview. British Journal of Pharmacology, 2017, 174, S1-S16.	5.4	269
17	COVALENT STRUCTURE OF FIBRINOGEN. Annals of the New York Academy of Sciences, 1983, 408, 28-43.	3.8	248
18	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology, 2019, 176, S142-S228.	5.4	242

#	Article	IF	CITATIONS
19	Characterization of human HtrA2, a novel serine protease involved in the mammalian cellular stress response. FEBS Journal, 2000, 267, 5699-5710.	0.2	227
20	The Concise Guide to PHARMACOLOGY 2015/16: Overview. British Journal of Pharmacology, 2015, 172, 5729-5743.	5.4	220
21	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Transporters. British Journal of Pharmacology, 2017, 174, S360-S446.	5.4	193
22	The Concise Guide to PHARMACOLOGY 2015/16: Transporters. British Journal of Pharmacology, 2015, 172, 6110-6202.	5.4	190
23	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Ion channels. British Journal of Pharmacology, 2021, 178, S157-S245.	5.4	187
24	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Introduction and Other Protein Targets. British Journal of Pharmacology, 2021, 178, S1-S26.	5.4	183
25	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Voltageâ€gated ion channels. British Journal of Pharmacology, 2017, 174, S160-S194.	5.4	178
26	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Catalytic receptors. British Journal of Pharmacology, 2017, 174, S225-S271.	5.4	177
27	The Concise Guide to PHARMACOLOGY 2015/16: Voltageâ€gated ion channels. British Journal of Pharmacology, 2015, 172, 5904-5941.	5.4	176
28	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Transporters. British Journal of Pharmacology, 2019, 176, S397-S493.	5.4	166
29	The Concise Guide to PHARMACOLOGY 2015/16: Catalytic receptors. British Journal of Pharmacology, 2015, 172, 5979-6023.	5.4	158
30	ASP1 (BACE2) Cleaves the Amyloid Precursor Protein at the \hat{l}^2 -Secretase Site. Molecular and Cellular Neurosciences, 2000, 16, 609-619.	2.2	156
31	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Catalytic receptors. British Journal of Pharmacology, 2019, 176, S247-S296.	5.4	156
32	The nitroreductase enzyme in walker cells that activates 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB 1954) to 5-(aziridin-1-YL)-4-hydroxylamino-2-nitrobenzamide is a form of NAD(P)H dehydrogenase (quinone) (EC 1.6.99.2). Biochemical Pharmacology, 1988, 37, 4671-4677.	4.4	148
33	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Catalytic receptors. British Journal of Pharmacology, 2021, 178, S264-S312.	5.4	148
34	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Ligandâ€gated ion channels. British Journal of Pharmacology, 2017, 174, S130-S159.	5.4	144
35	Purification, Properties, Sequencing, and Cloning of a Lipoprotein-Associated, Serine-Dependent Phospholipase Involved in the Oxidative Modification of Low-Density Lipoproteins. Arteriosclerosis, Thrombosis, and Vascular Biology, 1996, 16, 591-599.	2.4	143
36	The Concise Guide to PHARMACOLOGY 2015/16: Ligandâ€gated ion channels. British Journal of Pharmacology, 2015, 172, 5870-5903.	5.4	133

#	Article	IF	Citations
37	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Nuclear hormone receptors. British Journal of Pharmacology, 2017, 174, S208-S224.	5.4	131
38	The IUPHAR/BPS Guide to PHARMACOLOGY in 2020: extending immunopharmacology content and introducing the IUPHAR/MMV Guide to MALARIA PHARMACOLOGY. Nucleic Acids Research, 2020, 48, D1006-D1021.	14.5	131
39	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Nuclear hormone receptors. British Journal of Pharmacology, 2019, 176, S229-S246.	5.4	127
40	The Concise Guide to PHARMACOLOGY 2015/16: Nuclear hormone receptors. British Journal of Pharmacology, 2015, 172, 5956-5978.	5.4	119
41	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Transporters. British Journal of Pharmacology, 2021, 178, S412-S513.	5.4	114
42	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Nuclear hormone receptors. British Journal of Pharmacology, 2021, 178, S246-S263.	5.4	100
43	The IUPHAR/BPS guide to PHARMACOLOGY in 2022: curating pharmacology for COVID-19, malaria and antibacterials. Nucleic Acids Research, 2022, 50, D1282-D1294.	14.5	99
44	Rat ATP citrate-lyase. Molecular cloning and sequence analysis of a full-length cDNA and mRNA abundance as a function of diet, organ, and age. Journal of Biological Chemistry, 1990, 265, 1430-5.	3.4	96
45	A genomic perspective on human proteases as drug targets. Drug Discovery Today, 2001, 6, 681-688.	6.4	87
46	Has the yo-yo stopped? An assessment of human protein-coding gene number. Proteomics, 2004, 4, 1712-1726.	2.2	85
47	Déjà vu: Stimulating open drug discovery for SARS-CoV-2. Drug Discovery Today, 2020, 25, 928-941.	6.4	81
48	Minimum information about a bioactive entity (MIABE). Nature Reviews Drug Discovery, 2011, 10, 661-669.	46.4	80
49	Sequence similarity between dopamine \hat{l}^2 -hydroxylase and peptide \hat{l}_\pm -amidating enzyme: Evidence for a conserved catalytic domain. FEBS Letters, 1989, 255, 116-120.	2.8	69
50	Making every SAR point count: the development of Chemistry Connect for the large-scale integration of structure and bioactivity data. Drug Discovery Today, 2011, 16, 1019-1030.	6.4	69
51	Open Source Drug Discovery: Highly Potent Antimalarial Compounds Derived from the Tres Cantos Arylpyrroles. ACS Central Science, 2016, 2, 687-701.	11.3	68
52	Inactivation of dopamine .betahydroxylase by p-cresol: isolation and characterization of covalently modified active site peptides. Biochemistry, 1988, 27, 9093-9101.	2.5	67
53	A rational roadmap for SARSâ€CoVâ€2/COVIDâ€19 pharmacotherapeutic research and development: IUPHAR Review 29. British Journal of Pharmacology, 2020, 177, 4942-4966.	5.4	61
54	Quantitative assessment of the expanding complementarity between public and commercial databases of bioactive compounds. Journal of Cheminformatics, 2009, 1, 10.	6.1	55

#	Article	lF	Citations
55	A genomic perspective on human proteases. FEBS Letters, 2001, 498, 214-218.	2.8	41
56	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Other ion channels. British Journal of Pharmacology, 2017, 174, S195-S207.	5.4	41
57	Purification to apparent homogeneity and partial amino acid sequence of rat liverO6-alkylguanine-DNA-alkyltransferase. Nucleic Acids Research, 1990, 18, 13-16.	14.5	40
58	The Concise Guide to PHARMACOLOGY 2015/16: Other ion channels. British Journal of Pharmacology, 2015, 172, 5942-5955.	5.4	40
59	Analytical and micropreparative capillary electrophoresis of the peptides from calcitonin. Analytical Biochemistry, 1991, 198, 36-42.	2.4	39
60	Identification, Genomic Organization, and mRNA Expression of LACTB, Encoding a Serine \hat{l}^2 -Lactamase-like Protein with an Amino-terminal Transmembrane Domain. Genomics, 2001, 78, 12-14.	2.9	38
61	Extracting and connecting chemical structures from text sources using chemicalize.org. Journal of Cheminformatics, 2013, 5, 20.	6.1	38
62	Illustrating and homology modeling the proteins of the Zika virus. F1000Research, 2016, 5, 275.	1.6	37
63	InChI in the wild: an assessment of InChIKey searching in Google. Journal of Cheminformatics, 2013, 5, 10.	6.1	36
64	Expression, purification and characterization of a human serine-dependent phospholipase A2 with high specificity for oxidized phospholipids and platelet activating factor. Biochemical Journal, 1998, 330, 1309-1315.	3.7	34
65	Amino acid sequence of \hat{l}^2 -galactoside-binding bovine heart lectin. FEBS Letters, 1987, 214, 301-304.	2.8	32
66	Towards BioDBcore: a community-defined information specification for biological databases. Nucleic Acids Research, 2011, 39, D7-D10.	14.5	32
67	Complementarity Between Public and Commercial Databases: New Opportunities in Medicinal Chemistry Informatics. Current Topics in Medicinal Chemistry, 2007, 7, 1502-1508.	2.1	31
68	Analysis of in vitrobioactivity data extracted from drug discovery literature and patents: Ranking 1654 human protein targets by assayed compounds and molecular scaffolds. Journal of Cheminformatics, 2011, 3, 14.	6.1	31
69	Towards BioDBcore: a community-defined information specification for biological databases. Database: the Journal of Biological Databases and Curation, 2011, 2011, baq027-baq027.	3.0	30
70	Inactivation of dopamine .betahydroxylase by .betaethynyltyramine: kinetic characterization and covalent modification of an active site peptide. Biochemistry, 1989, 28, 3833-3842.	2.5	28
71	Comparing the Chemical Structure and Protein Content of ChEMBL, DrugBank, Human Metabolome Database and the Therapeutic Target Database. Molecular Informatics, 2013, 32, 881-897.	2.5	28
72	Parallel Worlds of Public and Commercial Bioactive Chemistry Data. Journal of Medicinal Chemistry, 2015, 58, 2068-2076.	6.4	28

#	Article	IF	Citations
73	Characterization of peptides cleaved by plasmin from the C-terminal polymerization domain of human fibrinogen. Journal of Biological Chemistry, 1985, 260, 13095-101.	3.4	26
74	Illustrating and homology modeling the proteins of the Zika virus. F1000Research, 2016, 5, 275.	1.6	25
75	Assessing the protease and protease inhibitor content of the human genome. Journal of Peptide Science, 2000, 6, 453-458.	1.4	24
76	Splice variants: A homology modeling approach. Proteins: Structure, Function and Bioinformatics, 2004, 54, 596-608.	2.6	24
77	Thrombin-induced fibrinopeptide release from a fibrinogen variant (fibrinogen Sydney I) with an Aα Arg-16 → His substitution. FEBS Journal, 2008, 147, 593-600.	0.2	24
78	Challenges and recommendations for obtaining chemical structures of industry-provided repurposing candidates. Drug Discovery Today, 2013, 18, 58-70.	6.4	24
79	Bovine dopamine .betahydroxylase, primary structure determined by cDNA cloning and amino acid sequencing. Biochemistry, 1990, 29, 6466-6474.	2.5	22
80	The characterisation of novel secreted Ly-6 proteins from rat urine by the combined use of two-dimensional gel electrophoresis, microbore high performance liquid chromatography and expressed sequence tag data. Proteomics, 2002, 2, 187-196.	2.2	22
81	Fibrinogen Manchester: identification of an abnormal fibrinopeptide A with a C-terminal arginineâ†'histidine substitution. British Journal of Haematology, 1983, 54, 143-151.	2.5	21
82	Delayed release of an abnormal fibrinopeptide A from fibrinogen Manchester: effect of the Al $^\pm$ 16 Arg ↠His substitution upon fibrin monomer polymerization and the immunological crossreactivity of the peptide. British Journal of Haematology, 1983, 53, 587-597.	2.5	20
83	The Impact of Genomics on Drug Discovery. Progress in Medicinal Chemistry, 2000, 37, 1-43.	10.4	19
84	BACE2 as a new diabetes target: a patent review (2010 – 2012). Expert Opinion on Therapeutic Patents, 2013, 23, 649-663.	5.0	19
85	Expanding opportunities for mining bioactive chemistry from patents. Drug Discovery Today: Technologies, 2015, 14, 3-9.	4.0	18
86	Inactivation of dopamine \hat{l}^2 -hydroxylase by p-cresol: Evidence for a second, minor site of covalent modification at tyrosine 357. BBA - Proteins and Proteomics, 1990, 1037, 256-258.	2.1	17
87	A tale of two drug targets: the evolutionary history of BACE1 and BACE2. Frontiers in Genetics, 2013, 4, 293.	2.3	17
88	Is systems pharmacology ready to impact upon therapy development? A study on the cholesterol biosynthesis pathway. British Journal of Pharmacology, 2017, 174, 4362-4382.	5.4	17
89	Finding small molecules for the â€~next Ebola'. F1000Research, 2015, 4, 58.	1.6	17
90	Tracking 20 Years of Compound-to-Target Output from Literature and Patents. PLoS ONE, 2013, 8, e77142.	2.5	17

#	Article	IF	Citations
91	Mapping Between Databases of Compounds and Protein Targets. Methods in Molecular Biology, 2012, 910, 145-164.	0.9	16
92	Finding small molecules for the â€~next Ebola'. F1000Research, 2015, 4, 58.	1.6	14
93	Separation by capillary electrophoresis followed by dynamic elution. Analytical Biochemistry, 1991, 196, 178-182.	2.4	13
94	Accessing Expertâ€Curated Pharmacological Data in the IUPHAR/BPS Guide to PHARMACOLOGY. Current Protocols in Bioinformatics, 2018, 61, 1.34.1-1.34.46.	25.8	13
95	Caveat Usor: Assessing Differences between Major Chemistry Databases. ChemMedChem, 2018, 13, 470-481.	3.2	12
96	Last rolls of the yoyo: Assessing the human canonical protein count. F1000Research, 2017, 6, 448.	1.6	11
97	InterPro (The Integrated Resource of Protein Domains and Functional Sites). Yeast, 2000, 1, 327-334.	1.7	10
98	Direct analysis of plasma fibrinogen-derived fibrinopeptides by high-performance liquid chromatography. Thrombosis Research, 1986, 43, 195-204.	1.7	9
99	SARConnect: A Tool to Interrogate the Connectivity Between Proteins, Chemical Structures and Activity Data. Molecular Informatics, 2012, 31, 555-568.	2.5	9
100	Disposable Microbore High-Pressure Liquid Chromatography Columns for Protein and Peptide Separations. Analytical Biochemistry, 1999, 271, 152-158.	2.4	8
101	Genetically abnormal fibrinogens - some current characterisation strategies., 1983,, 125-144.		8
102	The IUPHAR Guide to Immunopharmacology: connecting immunology and pharmacology. Immunology, 2020, 160, 10-23.	4.4	7
103	Will the chemical probes please stand up?. RSC Medicinal Chemistry, 2021, 12, 1428-1441.	3.9	7
104	Use of sep-pak cartridges for on-line preparative high-performance liquid chromatography. Journal of Chromatography A, 1987, 397, 399-404.	3.7	6
105	Direct analysis of plasma fibrinogenâ€derived fibrinopeptides by highâ€performance liquid chromatography: investigation of nine congenital fibrinogen abnormalities. British Journal of Haematology, 1987, 65, 469-473.	2.5	6
106	Sequencing, tissue distribution and chromosomal assignment of a novel ubiquitin-specific protease USP23. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2000, 1490, 184-188.	2.4	5
107	Genetically abnormal fibrinogensstrategies for structure elucidation, including fibrinopeptide analysis. Current Problems in Clinical Biochemistry, 1984, 14, 273-320.	0.1	5
108	Proteomic approaches to central nervous system disorders. Current Opinion in Molecular Therapeutics, 2002, 4, 251-8.	2.8	5

#	Article	IF	CITATIONS
109	Retrieving GPCR data from public databases. Current Opinion in Pharmacology, 2016, 30, 38-43.	3.5	4
110	SynPharm: A Guide to PHARMACOLOGY Database Tool for Designing Drug Control into Engineered Proteins. ACS Omega, 2018, 3, 7993-8002.	3.5	4
111	Challenges of Connecting Chemistry to Pharmacology: Perspectives from Curating the IUPHAR/BPS Guide to PHARMACOLOGY. ACS Omega, 2018, 3, 8408-8420.	3.5	3
112	THE USE OF GLASS CAPILLARY TUBES AS DISPOSABLE MICROBORE COLUMNS FOR RP-HPLC OF PROTEINS AND PEPTIDES. , 1989, , 392-398.		3
113	Exploiting new genome data and Internet resources for the phylogenetic analysis of proteases, substrates and inhibitors. Biochemical Society Transactions, 2007, 35, 599-603.	3.4	2
114	Inverse pharmacology: Approaches and tools for introducing druggability into engineered proteins. Biotechnology Advances, 2019, 37, 107439.	11.7	2
115	Opening up connectivity between documents, structures and bioactivity. Beilstein Journal of Organic Chemistry, 2020, 16, 596-606.	2.2	2
116	BIOINFORMATIC ANALYSIS OF mRNA HETEROGENAITY IN THE PUTATIVE ALZHEIMERS BETA-SECRETASE, ASP2. Biochemical Society Transactions, 2000, 28, A84-A84.	3.4	1
117	Finding, Delineating and Analysing Genes. , 0, , 71-91.		1
118	A Bioinformatics Perspective on Genetics in Drug Discovery and Development., 0,, 495-528.		1
119	The Cinderella of Biological Data Integration: Addressing Some of the Challenges of Entity and Relationship Mining from Patent Sources. Lecture Notes in Computer Science, 2010, , 106-121.	1.3	1
120	SCINDR - The SCience INtroDuction Robot that will Connect Open Scientists. Research Ideas and Outcomes, 0, 2, e9995.	1.0	1
121	Hydrolases (version 2019.5) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	1
122	Synergistic scale-down of three protein micropreparation techniques. The Protein Journal, 1992, 11, 349-349.	1.1	0
123	Internet Resources for the Geneticist. , 0, , 21-37.		0
124	Finding, Delineating and Analysing Genes. , 0, , 85-104.		0
125	Shouldn't enantiomeric purity be included in the 'minimum information about a bioactive entity? Response from the MIABE group. Nature Reviews Drug Discovery, 2012, 11, 730-730.	46.4	0
126	Hydrolases (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	0