Carme Costa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2192207/publications.pdf

Version: 2024-02-01

471509 477307 1,001 28 17 29 citations h-index g-index papers 30 30 30 1972 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	CSF SERPINA3 Levels Are Elevated in Patients With Progressive MS. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	19
2	Selected Clostridia Strains from The Human Microbiota and their Metabolite, Butyrate, Improve Experimental Autoimmune Encephalomyelitis. Neurotherapeutics, 2021, 18, 920-937.	4.4	18
3	Angiogenin in the Neurogenic Subventricular Zone After Stroke. Frontiers in Neurology, 2021, 12, 662235.	2.4	5
4	Inhibition of the BMP Signaling Pathway Ameliorated Established Clinical Symptoms of Experimental Autoimmune Encephalomyelitis. Neurotherapeutics, 2020, 17, 1988-2003.	4.4	7
5	NLRP3 inflammasome as prognostic factor and therapeutic target in primary progressive multiple sclerosis patients. Brain, 2020, 143, 1414-1430.	7.6	92
6	Expression of Bone Morphogenetic Proteins in Multiple Sclerosis Lesions. American Journal of Pathology, 2019, 189, 665-676.	3.8	19
7	Circulating EZH2-positive T cells are decreased in multiple sclerosis patients. Journal of Neuroinflammation, 2018, 15, 296.	7.2	7
8	Exome sequencing study in patients with multiple sclerosis reveals variants associated with disease course. Journal of Neuroinflammation, 2018, 15, 265.	7.2	25
9	Clinical and Histopathological Amelioration of Experimental Autoimmune Encephalomyelitis by AAV Vectors Expressing a Soluble Interleukin-23 Receptor. Neurotherapeutics, 2017, 14, 1095-1106.	4.4	14
10	Semaphorin 7A as a Potential Therapeutic Target for Multiple Sclerosis. Molecular Neurobiology, 2017, 54, 4820-4831.	4.0	28
11	Multicentre comparison of a diagnostic assay: aquaporin-4 antibodies in neuromyelitis optica. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 1005-1015.	1.9	228
12	Long-Term Restoration of Thymidine Phosphorylase Function and Nucleoside Homeostasis Using Hematopoietic Gene Therapy in a Murine Model of Mitochondrial Neurogastrointestinal Encephalomyopathy. Human Gene Therapy, 2016, 27, 656-667.	2.7	26
13	Myeloid-derived suppressor cells expressing a self-antigen ameliorate experimental autoimmune encephalomyelitis. Experimental Neurology, 2016, 286, 50-60.	4.1	21
14	Differential expression of sema3A and sema7A in a murine model of multiple sclerosis: Implications for a therapeutic design. Clinical Immunology, 2016, 163, 22-33.	3.2	30
15	Breast regression protein-39 is not required for experimental autoimmune encephalomyelitis induction. Clinical Immunology, 2015, 160, 133-141.	3.2	6
16	Chitinase 3-like 1: prognostic biomarker in clinically isolated syndromes. Brain, 2015, 138, 918-931.	7.6	147
17	Hsp70 Regulates Immune Response in Experimental Autoimmune Encephalomyelitis. PLoS ONE, 2014, 9, e105737.	2.5	38
18	Inhibition of delta-like ligand 4 decreases Th1/Th17 response in a mouse model of multiple sclerosis. Neuroscience Letters, 2013, 541, 161-166.	2.1	22

#	Article	IF	CITATION
19	Treatment with MOG-DNA vaccines induces CD4+CD25+FoxP3+ regulatory T cells and up-regulates genes with neuroprotective functions in experimental autoimmune encephalomyelitis. Journal of Neuroinflammation, 2012, 9, 139.	7.2	35
20	Adult onset leukodystrophy with neuroaxonal spheroids and demyelinating plaqueâ€ike lesions. Neuropathology, 2012, 32, 285-292.	1.2	18
21	Central nervous system gene expression changes in a transgenic mouse model for bovine spongiform encephalopathy. Veterinary Research, 2011, 42, 109.	3.0	10
22	Implication of the tollâ€like receptor 4 pathway in the response to interferonâ€Î² in multiple sclerosis. Annals of Neurology, 2011, 70, 634-645.	5.3	35
23	Central nervous system extracellular matrix changes in a transgenic mouse model of bovine spongiform encephalopathy. Veterinary Journal, 2009, 182, 306-314.	1.7	4
24	Stress response in the central nervous system of a transgenic mouse model of bovine spongiform encephalopathy. Veterinary Journal, 2008, 178, 126-129.	1.7	14
25	Mapping of aggrecan, hyaluronic acid, heparan sulphate proteoglycans and aquaporin 4 in the central nervous system of the mouse. Journal of Chemical Neuroanatomy, 2007, 33, 111-123.	2.1	64
26	Aquaporin 1 and aquaporin 4 overexpression in bovine spongiform encephalopathy in a transgenic murine model and in cattle field cases. Brain Research, 2007, 1175 , $96-106$.	2.2	19
27	Immunohistochemical approach to the pathogenesis of bovine spongiform encephalopathy in its early stages. Journal of Virological Methods, 2006, 134, 15-29.	2.1	26
28	Assessment of calcium-binding proteins (Parvalbumin and Calbindin D-28K) and perineuronal nets in normal and scrapie-affected adult sheep brains. Journal of Virological Methods, 2006, 136, 137-146.	2.1	22