Junbai Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2191208/publications.pdf

Version: 2024-02-01

321 papers 18,540 citations

72 h-index

10351

120 g-index

342 all docs $\begin{array}{c} 342 \\ \text{docs citations} \end{array}$

times ranked

342

17786 citing authors

#	Article	IF	CITATIONS
1	Dopamine-Based Materials: Recent Advances in Synthesis Methods and Applications. Nanostructure Science and Technology, 2022, , 133-164.	0.1	2
2	Monitoring the distribution of internalized silica nanoparticles inside cells via direct stochastic optical reconstruction microscopy. Journal of Colloid and Interface Science, 2022, 615, 248-255.	5.0	2
3	Oriented Nanoarchitectonics of Bacteriorhodopsin for Enhancing ATP Generation in a F _o F ₁ â€ATPaseâ€Based Assembly System. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
4	Oriented Nanoarchitectonics of Bacteriorhodopsin for Enhancing ATP Generation in a F _o F ₁ â€ATPaseâ€Based Assembly System. Angewandte Chemie, 2022, 134, .	1.6	3
5	DNAâ€Based Dissipative Assembly toward Nanoarchitectonics. Advanced Functional Materials, 2022, 32, .	7.8	26
6	Controlled-Alignment Patterns of Dipeptide Micro- and Nanofibers. ACS Nano, 2022, 16, 10372-10382.	7.3	9
7	Coâ€assembled Supramolecular Gel of Dipeptide and Pyridine Derivatives with Controlled Chirality. Angewandte Chemie - International Edition, 2021, 60, 2099-2103.	7.2	67
8	Pt@polydopamine nanoparticles as nanozymes for enhanced photodynamic and photothermal therapy. Chemical Communications, 2021, 57, 255-258.	2.2	48
9	Embedment of Quantum Dots and Biomolecules in a Dipeptide Hydrogel Formed In Situ Using Microfluidics. Angewandte Chemie - International Edition, 2021, 60, 6724-6732.	7.2	20
10	Coâ€assembled Supramolecular Gel of Dipeptide and Pyridine Derivatives with Controlled Chirality. Angewandte Chemie, 2021, 133, 2127-2131.	1.6	8
11	Boric Acidâ€Fueled ATP Synthesis by F _o F ₁ ATP Synthase Reconstituted in a Supramolecular Architecture. Angewandte Chemie - International Edition, 2021, 60, 7617-7620.	7.2	14
12	Boric Acidâ€Fueled ATP Synthesis by F _o F ₁ ATP Synthase Reconstituted in a Supramolecular Architecture. Angewandte Chemie, 2021, 133, 7695-7698.	1.6	6
13	Embedment of Quantum Dots and Biomolecules in a Dipeptide Hydrogel Formed In Situ Using Microfluidics. Angewandte Chemie, 2021, 133, 6798-6806.	1.6	2
14	Photosystem II-based biomimetic assembly for enhanced photosynthesis. National Science Review, 2021, 8, nwab051.	4.6	19
15	Recent advances in dopamine-based materials constructed via one-pot co-assembly strategy. Advances in Colloid and Interface Science, 2021, 295, 102489.	7.0	27
16	Disassembly and reassembly of diphenylalanine crystals through evaporation of solvent. Journal of Colloid and Interface Science, 2021, 599, 661-666.	5.0	12
17	Cell membrane covered polydopamine nanoparticles with two-photon absorption for precise photothermal therapy of cancer. Journal of Colloid and Interface Science, 2021, 604, 596-603.	5.0	28
18	Gas-Induced Phase Transition of Dipeptide Supramolecular Assembly. CCS Chemistry, 2021, 3, 8-16.	4.6	17

#	Article	IF	Citations
19	Two-photon excited peptide nanodrugs for precise photodynamic therapy. Chemical Communications, 2021, 57, 2245-2248.	2.2	11
20	Dopamine-Mediated Biomineralization of Calcium Phosphate as a Strategy to Facilely Synthesize Functionalized Hybrids. Journal of Physical Chemistry Letters, 2021, 12, 10235-10241.	2.1	15
21	Insight into the efficiency of oxygen introduced photodynamic therapy (PDT) and deep PDT against cancers with various assembled nanocarriers. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1583.	3.3	51
22	Reconstitution of Motor Proteins through Molecular Assembly. Chinese Journal of Chemistry, 2020, 38, 123-129.	2.6	15
23	pH-Responsive dopamine-based nanoparticles assembled i>via /i>Schiff base bonds for synergistic anticancer therapy. Chemical Communications, 2020, 56, 13347-13350.	2.2	18
24	Acidâ€Activatable Transmorphic Peptideâ€Based Nanomaterials for Photodynamic Therapy. Angewandte Chemie - International Edition, 2020, 59, 20582-20588.	7.2	134
25	Acidâ€Activatable Transmorphic Peptideâ€Based Nanomaterials for Photodynamic Therapy. Angewandte Chemie, 2020, 132, 20763-20769.	1.6	28
26	Tunable Mechanical and Optoelectronic Properties of Organic Cocrystals by Unexpected Stacking Transformation from H- to J- and X-Aggregation. ACS Nano, 2020, 14, 10704-10715.	7.3	61
27	Coassembly-Induced Transformation of Dipeptide Amyloid-Like Structures into Stimuli-Responsive Supramolecular Materials. ACS Nano, 2020, 14, 7181-7190.	7.3	62
28	Dynamic Detection of Active Enzyme Instructed Supramolecular Assemblies <i>In Situ via</i> Super-Resolution Microscopy. ACS Nano, 2020, 14, 4882-4889.	7.3	25
29	Nanoarchitectonics beyond Selfâ€Assembly: Challenges to Create Bioâ€Like Hierarchic Organization. Angewandte Chemie - International Edition, 2020, 59, 15424-15446.	7.2	176
30	Nanoarchitektonik als ein Ansatz zur Erzeugung bioÄĦnlicher hierarchischer Organisate. Angewandte Chemie, 2020, 132, 15550-15574.	1.6	16
31	A Dipeptideâ€Based Hierarchical Nanoarchitecture with Enhanced Catalytic Activity. Angewandte Chemie, 2020, 132, 19122-19125.	1.6	11
32	A Dipeptideâ€Based Hierarchical Nanoarchitecture with Enhanced Catalytic Activity. Angewandte Chemie - International Edition, 2020, 59, 18960-18963.	7.2	35
33	Selfâ€Assembled Dipeptide Aerogels with Tunable Wettability. Angewandte Chemie, 2020, 132, 12030-12034.	1.6	7
34	Selfâ€Assembled Dipeptide Aerogels with Tunable Wettability. Angewandte Chemie - International Edition, 2020, 59, 11932-11936.	7.2	20
35	Multicore–Shell Ag–CuO networked with CuO nanorods for enhanced non-enzymatic glucose detection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 598, 124816.	2.3	28
36	AlEgen–lipid structures: Assembly and biological applications. Aggregate, 2020, 1, 69-79.	5.2	37

#	Article	IF	CITATIONS
37	Supramolecularly Assembled Nanocomposites as Biomimetic Chloroplasts for Enhancement of Photophosphorylation. Angewandte Chemie, 2019, 131, 806-810.	1.6	10
38	Langmuir Nanoarchitectonics from Basic to Frontier. Langmuir, 2019, 35, 3585-3599.	1.6	111
39	Hierarchically oriented organization inÂsupramolecular peptide crystals. Nature Reviews Chemistry, 2019, 3, 567-588.	13.8	326
40	Assembled cationic dipeptide-gold nanoparticle hybrid microspheres for electrochemical biosensors with enhanced sensitivity. Journal of Colloid and Interface Science, 2019, 557, 628-634.	5.0	11
41	Biomorphic Engineering of Multifunctional Polylactide Stomatocytes toward Therapeutic Nanoâ€Red Blood Cells. Advanced Science, 2019, 6, 1801678.	5. 6	34
42	Thermoresponsive Polymer Brush Modulation on the Direction of Motion of Phoretically Driven Janus Micromotors. Angewandte Chemie - International Edition, 2019, 58, 4184-4188.	7.2	76
43	Bioinspired Stable and Photoluminescent Assemblies for Power Generation. Advanced Materials, 2019, 31, e1807481.	11.1	82
44	Thermoresponsive Polymer Brush Modulation on the Direction of Motion of Phoretically Driven Janus Micromotors. Angewandte Chemie, 2019, 131, 4228-4232.	1.6	16
45	Reconstitution of FoF1-ATPase-based biomimetic systems. Nature Reviews Chemistry, 2019, 3, 361-374.	13.8	39
46	Photoactive properties of supramolecular assembled short peptides. Chemical Society Reviews, 2019, 48, 4387-4400.	18.7	150
47	The Ultrafast Assembly of a Dipeptide Supramolecular Organogel and its Phase Transition from Gel to Crystal. Angewandte Chemie - International Edition, 2019, 58, 11072-11077.	7.2	38
48	The Ultrafast Assembly of a Dipeptide Supramolecular Organogel and its Phase Transition from Gel to Crystal. Angewandte Chemie, 2019, 131, 11189-11194.	1.6	12
49	Gold nanorods based multicompartment mesoporous silica composites as bioagents for highly efficient photothermal therapy. Journal of Colloid and Interface Science, 2019, 549, 9-15.	5.0	32
50	Stable and optoelectronic dipeptide assemblies for power harvesting. Materials Today, 2019, 30, 10-16.	8.3	62
51	Tuning Thiolâ€Based Selfâ€Assembled Monolayer Chemistry on a Gold Surface towards the Synthesis of Biochemical Fuel. Angewandte Chemie, 2019, 131, 1122-1126.	1.6	4
52	Molecular Assembly of Rotary and Linear Motor Proteins. Accounts of Chemical Research, 2019, 52, 1623-1631.	7.6	29
53	Cell membrane-covered nanoparticles as biomaterials. National Science Review, 2019, 6, 551-561.	4.6	115
54	Assembled Vitamin B2 Nanocrystals with Optical Waveguiding and Photosensitizing Properties for Potential Biomedical Application. Angewandte Chemie - International Edition, 2019, 58, 7254-7258.	7.2	14

#	Article	IF	Citations
55	Assembled Vitamin B2 Nanocrystals with Optical Waveguiding and Photosensitizing Properties for Potential Biomedical Application. Angewandte Chemie, 2019, 131, 7332-7336.	1.6	2
56	Nanozymeâ€Catalyzed Cascade Reactions for Mitochondriaâ€Mimicking Oxidative Phosphorylation. Angewandte Chemie - International Edition, 2019, 58, 5572-5576.	7.2	104
57	Nanozymeâ€Catalyzed Cascade Reactions for Mitochondriaâ€Mimicking Oxidative Phosphorylation. Angewandte Chemie, 2019, 131, 5628-5632.	1.6	12
58	Molecular Assemblies of Biomimetic Microcapsules. Langmuir, 2019, 35, 8557-8564.	1.6	15
59	Photodynamic Therapy with Liposomes Encapsulating Photosensitizers with Aggregation-Induced Emission. Nano Letters, 2019, 19, 1821-1826.	4.5	138
60	Solvent-tunable dipeptide-based nanostructures with enhanced optical-to-electrical transduction. Chemical Communications, 2019, 55, 13136-13139.	2.2	11
61	Covalently assembled dopamine nanoparticle as an intrinsic photosensitizer and pH-responsive nanocarrier for potential application in anticancer therapy. Chemical Communications, 2019, 55, 15057-15060.	2.2	79
62	Rigid Tightly Packed Amino Acid Crystals as Functional Supramolecular Materials. ACS Nano, 2019, 13, 14477-14485.	7.3	48
63	Unidirectional Branching Growth of Dipeptide Single Crystals for Remote Light Multiplication and Collection. ACS Applied Materials & Samp; Interfaces, 2019, 11, 31-36.	4.0	18
64	Supramolecularly Assembled Nanocomposites as Biomimetic Chloroplasts for Enhancement of Photophosphorylation. Angewandte Chemie - International Edition, 2019, 58, 796-800.	7.2	37
65	Tuning Thiolâ€Based Selfâ€Assembled Monolayer Chemistry on a Gold Surface towards the Synthesis of Biochemical Fuel. Angewandte Chemie - International Edition, 2019, 58, 1110-1114.	7.2	16
66	Proton-consumed nanoarchitectures toward sustainable and efficient photophosphorylation. Journal of Colloid and Interface Science, 2019, 535, 325-330.	5.0	17
67	Controlled Assembly of Chiral Structure of Diphenylalanine Peptide. Acta Chimica Sinica, 2019, 77, 1173.	0.5	9
68	Magnetic Mesoporous Silica Nanoparticles Cloaked by Red Blood Cell Membranes: Applications in Cancer Therapy. Angewandte Chemie - International Edition, 2018, 57, 6049-6053.	7.2	241
69	Optically Matched Semiconductor Quantum Dots Improve Photophosphorylation Performed by Chloroplasts. Angewandte Chemie, 2018, 130, 6642-6645.	1.6	12
70	Intraparticle FRET for Enhanced Efficiency of Twoâ€Photon Activated Photodynamic Therapy. Advanced Healthcare Materials, 2018, 7, e1701357.	3.9	22
71	Optically Matched Semiconductor Quantum Dots Improve Photophosphorylation Performed by Chloroplasts. Angewandte Chemie - International Edition, 2018, 57, 6532-6535.	7.2	25
72	Titelbild: Magnetic Mesoporous Silica Nanoparticles Cloaked by Red Blood Cell Membranes: Applications in Cancer Therapy (Angew. Chem. 21/2018). Angewandte Chemie, 2018, 130, 6063-6063.	1.6	0

#	Article	IF	Citations
73	Magnetic Mesoporous Silica Nanoparticles Cloaked by Red Blood Cell Membranes: Applications in Cancer Therapy. Angewandte Chemie, 2018, 130, 6157-6161.	1.6	18
74	Recent developments in dopamine-based materials for cancer diagnosis and therapy. Advances in Colloid and Interface Science, 2018, 252, 1-20.	7.0	53
75	Bioinspired Assembly of Hierarchical Lightâ€Harvesting Architectures for Improved Photophosphorylation. Advanced Functional Materials, 2018, 28, 1706557.	7.8	35
76	Directed Self-Assembly of Dipeptide Single Crystal in a Capillary. ACS Nano, 2018, 12, 1934-1939.	7.3	26
77	Supramolecular Assembly of Photosystem II and Adenosine Triphosphate Synthase in Artificially Designed Honeycomb Multilayers for Photophosphorylation. ACS Nano, 2018, 12, 1455-1461.	7.3	26
78	Chargeâ€Induced Secondary Structure Transformation of Amyloidâ€Derived Dipeptide Assemblies from βâ€Sheet to αâ€Helix. Angewandte Chemie, 2018, 130, 1553-1558.	1.6	28
79	A Photoinduced Reversible Phase Transition in a Dipeptide Supramolecular Assembly. Angewandte Chemie - International Edition, 2018, 57, 1903-1907.	7.2	86
80	A Photoinduced Reversible Phase Transition in a Dipeptide Supramolecular Assembly. Angewandte Chemie, 2018, 130, 1921-1925.	1.6	29
81	Chargeâ€Induced Secondary Structure Transformation of Amyloidâ€Derived Dipeptide Assemblies from βâ€Sheet to αâ€Helix. Angewandte Chemie - International Edition, 2018, 57, 1537-1542.	7.2	192
82	Fabrication of two-dimensional (2D) ordered microsphere aligned by supramolecular self-assembly of Formyl-azobenzene and dipeptide. Journal of Colloid and Interface Science, 2018, 514, 491-495.	5.0	9
83	Fabrication of one-dimensional gold hierarchical nanostructures through supramolecular assembly. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 541, 52-57.	2.3	2
84	An Assembled Nanocomplex for Improving both Therapeutic Efficiency and Treatment Depth in Photodynamic Therapy. Angewandte Chemie, 2018, 130, 7885-7889.	1.6	24
85	Controlled movement of kinesin-driven microtubule along a directional track. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 550, 186-192.	2.3	2
86	An Assembled Nanocomplex for Improving both Therapeutic Efficiency and Treatment Depth in Photodynamic Therapy. Angewandte Chemie - International Edition, 2018, 57, 7759-7763.	7.2	104
87	Nitrogen-doped graphene quantum dots coupled with photosensitizers for one-/two-photon activated photodynamic therapy based on a FRET mechanism. Chemical Communications, 2018, 54, 715-718.	2.2	45
88	Supramolecularly Assembled Nanocomposites as Biomimetic Chloroplasts for Enhancement of Photophosphorylation. Angewandte Chemie, 2018, 131, 929.	1.6	0
89	Editorial overview: Self-Assembly. Current Opinion in Colloid and Interface Science, 2018, 35, A1-A3.	3.4	0
90	Assembled Nanocomplex for Improving Photodynamic Therapy through Intraparticle Fluorescence Resonance Energy Transfer. Chemistry - an Asian Journal, 2018, 13, 3540-3546.	1.7	4

#	Article	IF	CITATIONS
91	Spontaneous Membrane Generation and Extension in a Dipeptide Single Crystal and Phospholipid Mixed System. Angewandte Chemie - International Edition, 2018, 57, 11404-11407.	7.2	14
92	Different Microtubule Structures Assembled by Kinesin Motors. Langmuir, 2018, 34, 9768-9773.	1.6	4
93	Quantum confined peptide assemblies with tunable visible to near-infrared spectral range. Nature Communications, 2018, 9, 3217.	5.8	122
94	Spontaneous Membrane Generation and Extension in a Dipeptide Single Crystal and Phospholipid Mixed System. Angewandte Chemie, 2018, 130, 11574-11577.	1.6	4
95	Optimal Allocation of Bacterial Protein Resources under Nonlethal Protein Maturation Stress. Biophysical Journal, 2018, 115, 896-910.	0.2	7
96	One-pot mass self-assembly of MnO2 sponge-like hierarchical nanostructures through a limited hydrothermal reaction and their environmental applications. Journal of Colloid and Interface Science, 2017, 490, 621-627.	5.0	19
97	Perspective of energy transfer from light energy into biological energy. Green Energy and Environment, 2017, 2, 18-22.	4.7	12
98	Transformation of Dipeptideâ€Based Organogels into Chiral Crystals by Cryogenic Treatment. Angewandte Chemie - International Edition, 2017, 56, 2660-2663.	7.2	106
99	Transformation of Dipeptideâ€Based Organogels into Chiral Crystals by Cryogenic Treatment. Angewandte Chemie, 2017, 129, 2704-2707.	1.6	25
100	Biofluidâ€Triggered Burst Release from an Adaptive Covalently Assembled Dipeptide Nanocontainer for Emergency Treatment. Advanced Healthcare Materials, 2017, 6, 1601198.	3.9	27
101	Assembly of <scp>CdTe</scp> Quantum Dots and Photosystem <scp>II</scp> Multilayer Films with Enhanced Photocurrent. Chinese Journal of Chemistry, 2017, 35, 881-885.	2.6	12
102	Hyperbranched Polyglycerol-Induced Porous Silica Nanoparticles as Drug Carriers for Cancer Therapy Inâ€Vitro and Inâ€Vivo. ChemistryOpen, 2017, 6, 158-164.	0.9	10
103	Covalent-reaction-induced interfacial assembly to transform doxorubicin into nanophotomedicine with highly enhanced anticancer efficiency. Physical Chemistry Chemical Physics, 2017, 19, 23733-23739.	1.3	13
104	Self-Assembly of Ultralong Aligned Dipeptide Single Crystals. ACS Nano, 2017, 11, 10489-10494.	7.3	24
105	Stimuliâ€Responsive Dipeptide–Protein Hydrogels through Schiff Base Coassembly. Macromolecular Rapid Communications, 2017, 38, 1700408.	2.0	24
106	Enhanced Photophosphorylation of a Chloroplastâ€Entrapping Longâ€Lived Photoacid. Angewandte Chemie, 2017, 129, 13083-13087.	1.6	18
107	Co-assembly of photosystem II in nanotubular indium–tin oxide multilayer films templated by cellulose substance for photocurrent generation. Journal of Materials Chemistry A, 2017, 5, 19826-19835.	5.2	18
108	Compartmentalized Assembly of Motor Protein Reconstituted on Protocell Membrane toward Highly Efficient Photophosphorylation. ACS Nano, 2017, 11, 10175-10183.	7.3	41

#	Article	lF	Citations
109	Surface chemistry and interface science. Physical Chemistry Chemical Physics, 2017, 19, 23568-23569.	1.3	4
110	Bis(pyrene)-Doped Cationic Dipeptide Nanoparticles for Two-Photon-Activated Photodynamic Therapy. Biomacromolecules, 2017, 18, 3506-3513.	2.6	49
111	Enhanced Photophosphorylation of a Chloroplastâ€Entrapping Longâ€Lived Photoacid. Angewandte Chemie - International Edition, 2017, 56, 12903-12907.	7.2	54
112	Disassembly of Dipeptide Single Crystals Can Transform the Lipid Membrane into a Network. ACS Nano, 2017, 11, 7349-7354.	7.3	30
113	Recent progresses in layer-by-layer assembled biogenic capsules and their applications. Journal of Colloid and Interface Science, 2017, 487, 107-117.	5.0	55
114	Interfacial Assembly of Photosystem II with Conducting Polymer Films toward Enhanced Photoâ€Bioelectrochemical Cells. Advanced Materials Interfaces, 2017, 4, 1600619.	1.9	25
115	Facile fabrication of robust polydopamine microcapsules for insulin delivery. Journal of Colloid and Interface Science, 2017, 487, 12-19.	5.0	68
116	Assembly and application of diphenylalanine dipeptide nanostructures. Chinese Science Bulletin, 2017, 62, 469-477.	0.4	11
117	Molecular Assembly of Polysaccharideâ€Based Microcapsules and Their Biomedical Applications. Chemical Record, 2016, 16, 1991-2004.	2.9	16
118	Automatic Assembly of Ultraâ€Multilayered Nanotube–Nanoparticle Composites. Chemistry - an Asian Journal, 2016, 11, 2667-2670.	1.7	4
119	Facile Coâ€Assembly of a Dipeptideâ€Based Organogel toward Efficient Triplet–Triplet Annihilation Photonic Upconversion. Chemistry - an Asian Journal, 2016, 11, 2700-2704.	1.7	11
120	Covalently Assembled Dipeptide Nanospheres as Intrinsic Photosensitizers for Efficient Photodynamic Therapy in Vitro. Chemistry - A European Journal, 2016, 22, 6477-6481.	1.7	26
121	Hyperbranched Polyglycerolâ€Doped Mesoporous Silica Nanoparticles for One―and Twoâ€Photon Activated Photodynamic Therapy. Advanced Functional Materials, 2016, 26, 2561-2570.	7.8	70
122	Integrating photosystem II into a porous TiO ₂ nanotube network toward highly efficient photo-bioelectrochemical cells. Journal of Materials Chemistry A, 2016, 4, 12197-12204.	5.2	55
123	Gelatinâ€Assisted Synthesis of Vaterite Nanoparticles with Higher Surface Area and Porosity as Anticancer Drug Containers In Vitro. ChemPlusChem, 2016, 81, 194-201.	1.3	32
124	Direct Observation of the Distribution of Gelatin in Calcium Carbonate Crystals by Superâ€Resolution Fluorescence Microscopy. Angewandte Chemie, 2016, 128, 920-923.	1.6	9
125	Nanoarchitectonics for Advanced Materials: Strategy Beyond Nanotechnology. Advanced Materials, 2016, 28, 987-988.	11.1	38
126	Macrophage Cell Membrane Camouflaged Au Nanoshells for in Vivo Prolonged Circulation Life and Enhanced Cancer Photothermal Therapy. ACS Applied Materials & Samp; Interfaces, 2016, 8, 9610-9618.	4.0	295

#	Article	IF	CITATIONS
127	Biomacromolecules based core/shell architecture toward biomedical applications. Advances in Colloid and Interface Science, 2016, 237, 43-51.	7.0	23
128	Biomimetic membrane-conjugated graphene nanoarchitecture for light-manipulating combined cancer treatment in vitro. Journal of Colloid and Interface Science, 2016, 482, 121-130.	5.0	25
129	Complex Assembly of Polymer Conjugated Mesoporous Silica Nanoparticles for Intracellular pH-Responsive Drug Delivery. Langmuir, 2016, 32, 12453-12460.	1.6	38
130	Multilayer Microcapsules for FRET Analysis and Twoâ€Photonâ€Activated Photodynamic Therapy. Angewandte Chemie - International Edition, 2016, 55, 13538-13543.	7.2	44
131	Multilayer Microcapsules for FRET Analysis and Twoâ€Photonâ€Activated Photodynamic Therapy. Angewandte Chemie, 2016, 128, 13736-13741.	1.6	3
132	Rücktitelbild: Multilayer Microcapsules for FRET Analysis and Twoâ€Photonâ€Activated Photodynamic Therapy (Angew. Chem. 43/2016). Angewandte Chemie, 2016, 128, 13816-13816.	1.6	0
133	Preparation of multicompartment silica-gelatin nanoparticles with self-decomposability as drug containers for cancer therapy in vitro. RSC Advances, 2016, 6, 70064-70071.	1.7	5
134	Automatic Bayesian single molecule identification for localization microscopy. Scientific Reports, 2016, 6, 33521.	1.6	4
135	Injectable Self-Assembled Dipeptide-Based Nanocarriers for Tumor Delivery and Effective In Vivo Photodynamic Therapy. ACS Applied Materials & Samp; Interfaces, 2016, 8, 30759-30767.	4.0	59
136	Coassembly of Photosystem II and ATPase as Artificial Chloroplast for Light-Driven ATP Synthesis. ACS Nano, 2016, 10, 556-561.	7.3	125
137	Selfâ€Assembled Smart Nanocarriers for Targeted Drug Delivery. Advanced Materials, 2016, 28, 1302-1311.	11.1	189
138	Hemoglobinâ€Based Nanoarchitectonic Assemblies as Oxygen Carriers. Advanced Materials, 2016, 28, 1312-1318.	11.1	146
139	Nanoarchitectonics for Dynamic Functional Materials from Atomicâ€∮Molecular‣evel Manipulation to Macroscopic Action. Advanced Materials, 2016, 28, 1251-1286.	11.1	441
140	Direct Observation of the Distribution of Gelatin in Calcium Carbonate Crystals by Superâ€Resolution Fluorescence Microscopy. Angewandte Chemie - International Edition, 2016, 55, 908-911.	7.2	33
141	Observation of intracellular interactions between DNA origami and lysosomes by the fluorescence localization method. Chemical Communications, 2016, 52, 9240-9242.	2.2	21
142	Layer by layer assembly of albumin nanoparticles with selective recognition of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Journal of Colloid and Interface Science, 2016, 465, 11-17.	5.0	31
143	Fabrication of Mesoporous Silica Nanoparticle with Well-Defined Multicompartment Structure as Efficient Drug Carrier for Cancer Therapy in Vitro and in Vivo. ACS Applied Materials & Deficient Structure as 2016, 8, 8900-8907.	4.0	38
144	Effects of cooperation between translating ribosome and RNA polymerase on termination efficiency of the Rho-independent terminator. Nucleic Acids Research, 2016, 44, 2554-2563.	6.5	33

#	Article	IF	Citations
145	Nanocapsules: Macrophage Cell Membrane Camouflaged Mesoporous Silica Nanocapsules for In Vivo Cancer Therapy (Adv. Healthcare Mater. 11/2015). Advanced Healthcare Materials, 2015, 4, 1578-1578.	3.9	7
146	The Directional Observation of Highly Dynamic Membrane Tubule Formation Induced by Engulfed Liposomes. Scientific Reports, 2015, 5, 16559.	1.6	12
147	Nearâ€Infraredâ€Activated Nanocalorifiers in Microcapsules: Vapor Bubble Generation for Inâ€Vivo Enhanced Cancer Therapy. Angewandte Chemie - International Edition, 2015, 54, 12782-12787.	7.2	118
148	Frontispiece: High Impact of Uranyl Ions on Carrying-Releasing Oxygen Capability of Hemoglobin-Based Blood Substitutes. Chemistry - A European Journal, 2015, 21, n/a-n/a.	1.7	0
149	Synthesis of Peptideâ€Based Hybrid Nanobelts with Enhanced Color Emission by Heat Treatment or Water Induction. Chemistry - A European Journal, 2015, 21, 9461-9467.	1.7	30
150	Co-assembly of photosystem II/reduced graphene oxide multilayered biohybrid films for enhanced photocurrent. Nanoscale, 2015, 7, 10908-10911.	2.8	55
151	High Impact of Uranyl Ions on Carrying–Releasing Oxygen Capability of Hemoglobinâ€Based Blood Substitutes. Chemistry - A European Journal, 2015, 21, 520-525.	1.7	12
152	Unprecedentedly High Tissue Penetration Capability of Coâ€Assembled Nanosystems for Twoâ€Photon Fluorescence Imaging In Vivo. Advanced Optical Materials, 2015, 3, 646-651.	3.6	26
153	Selfâ€Assembly of Cationic Dipeptides Forming Rectangular Microtubes and Microrods with Optical Waveguiding Properties. Advanced Optical Materials, 2015, 3, 194-198.	3.6	34
154	Molecular Assembly of Schiff Base Interactions: Construction and Application. Chemical Reviews, 2015, 115, 1597-1621.	23.0	392
155	Facile fabrication of diphenylalanine peptide hollow spheres using ultrasound-assisted emulsion templates. Chemical Communications, 2015, 51, 7219-7221.	2.2	32
156	SNSMIL, a real-time single molecule identification and localization algorithm for super-resolution fluorescence microscopy. Scientific Reports, 2015, 5, 11073.	1.6	29
157	pH responsive ATP carriers to drive kinesin movement. Chemical Communications, 2015, 51, 13044-13046.	2.2	11
158	Controlled Rod Nanostructured Assembly of Diphenylalanine and Their Optical Waveguide Properties. ACS Nano, 2015, 9, 2689-2695.	7.3	200
159	Macrophage Cell Membrane Camouflaged Mesoporous Silica Nanocapsules for In Vivo Cancer Therapy. Advanced Healthcare Materials, 2015, 4, 1645-1652.	3.9	259
160	Polypyrrole-stabilized gold nanorods with enhanced photothermal effect towards two-photon photothermal therapy. Journal of Materials Chemistry B, 2015, 3, 4539-4545.	2.9	57
161	Colloidal Gold–Collagen Protein Core–Shell Nanoconjugate: One-Step Biomimetic Synthesis, Layer-by-Layer Assembled Film, and Controlled Cell Growth. ACS Applied Materials & Diterfaces, 2015, 7, 24733-24740.	4.0	88
162	Functional architectures based on self-assembly of bio-inspired dipeptides: Structure modulation and its photoelectronic applications. Advances in Colloid and Interface Science, 2015, 225, 177-193.	7.0	62

#	Article	IF	Citations
163	Rational assembly of a biointerfaced core@shell nanocomplex towards selective and highly efficient synergistic photothermal/photodynamic therapy. Nanoscale, 2015, 7, 20197-20210.	2.8	58
164	Carrier-inside-carrier: polyelectrolyte microcapsules as reservoir for drug-loaded liposomes. Journal of Liposome Research, 2015, 25, 122-130.	1.5	6
165	Enzymeâ€Responsive Release of Doxorubicin from Monodisperse Dipeptideâ€Based Nanocarriers for Highly Efficient Cancer Treatment In Vitro. Advanced Functional Materials, 2015, 25, 1193-1204.	7.8	178
166	Controlled Preparation of Porous TiO ₂ â€"Ag Nanostructures through Supramolecular Assembly for Plasmonâ€Enhanced Photocatalysis. Advanced Materials, 2015, 27, 314-319.	11.1	234
167	A self-powered kinesin-microtubule system for smart cargo delivery. Nanoscale, 2015, 7, 82-85.	2.8	33
168	Photo-induced Reversible Structural Transition of Cationic Diphenylalanine Peptide Self-Assembly. Small, 2015, 11, 1787-1791.	5.2	63
169	Selfâ€Assembly of Hierarchical Nanostructures from Dopamine and Polyoxometalate for Oral Drug Delivery. Chemistry - A European Journal, 2014, 20, 499-504.	1.7	73
170	Multifunctional Porous Microspheres Based on Peptide–Porphyrin Hierarchical Coâ€Assembly. Angewandte Chemie - International Edition, 2014, 53, 2366-2370.	7.2	161
171	Transporting a Tube in a Tube. Nano Letters, 2014, 14, 6160-6164.	4.5	34
172	One-Pot Ultrafast Self-Assembly of Autofluorescent Polyphenol-Based Core@Shell Nanostructures and Their Selective Antibacterial Applications. ACS Nano, 2014, 8, 8529-8536.	7.3	79
173	Lipid, protein and poly(NIPAM) coated mesoporous silica nanoparticles for biomedical applications. Advances in Colloid and Interface Science, 2014, 207, 155-163.	7.0	64
174	Peptide p160â€Coated Silica Nanoparticles Applied in Photodynamic Therapy. Chemistry - an Asian Journal, 2014, 9, 2126-2131.	1.7	9
175	Fabrication of tumor necrosis factor-related apoptosis inducing ligand (TRAIL)/ALG modified CaCO3 as drug carriers with the function of tumor selective recognition. Journal of Materials Chemistry B, 2013, 1, 1326.	2.9	34
176	Assembled Hemoglobin and Catalase Nanotubes for the Treatment of Oxidative Stress. Journal of Physical Chemistry C, 2013, , 130917064227008.	1.5	6
177	Responsive Helical Selfâ€Assembly of AgNO ₃ and Melamine Through Asymmetric Coordination for Ag Nanochain Synthesis. Small, 2013, 9, 1021-1024.	5.2	48
178	Assembly of catalase-based bioconjugates for enhanced anticancer efficiency of photodynamic therapy in vitro. Chemical Communications, 2013, 49, 10733.	2.2	51
179	Manipulating assembly of cationic dipeptides using sulfonic azobenzenes. Chemical Communications, 2013, 49, 9956.	2.2	24
180	The facile 3D self-assembly of porous iron hydroxide and oxide hierarchical nanostructures for removing dyes from wastewater. Journal of Materials Chemistry A, 2013, 1, 10300.	5.2	41

#	Article	IF	Citations
181	Alginateâ€Based Microcapsules with a Molecule Recognition Linker and Photosensitizer for the Combined Cancer Treatment. Chemistry - an Asian Journal, 2013, 8, 736-742.	1.7	29
182	Assembled Microcapsules by Doxorubicin and Polysaccharide as High Effective Anticancer Drug Carriers. Advanced Healthcare Materials, 2013, 2, 1246-1251.	3.9	39
183	Selfâ€Organization of Honeycombâ€like Porous TiO ₂ Films by means of the Breathâ€Figure Method for Surface Modification of Titanium Implants. Chemistry - A European Journal, 2013, 19, 5306-5313.	1.7	25
184	Bioluminescent Microcapsules: Applications in Activating a Photosensitizer. Chemistry - A European Journal, 2013, 19, 4548-4555.	1.7	34
185	å^†å뻿生体系在纳米生物工程应用ä¸çš"ç"究进展. Chinese Science Bulletin, 2013, 58, 2393-23	9 7 0.4	1
186	Highly Loaded Hemoglobin Spheres as Promising Artificial Oxygen Carriers. ACS Nano, 2012, 6, 6897-6904.	7.3	108
187	Hypocrellin-Loaded Gold Nanocages with High Two-Photon Efficiency for Photothermal/Photodynamic Cancer Therapy <i>in Vitro</i> . ACS Nano, 2012, 6, 8030-8040.	7.3	311
188	Complex polymer brush gradients based on nanolithography and surface-initiated polymerization. Chemical Society Reviews, 2012, 41, 3584.	18.7	70
189	Autonomous Movement of Controllable Assembled Janus Capsule Motors. ACS Nano, 2012, 6, 10910-10916.	7.3	214
190	One-Pot Synthesis of Polypeptide–Gold Nanoconjugates for ⟨i⟩in Vitro⟨/i⟩ Gene Transfection. ACS Nano, 2012, 6, 111-117.	7.3	93
191	Construction and Evaluation of Hemoglobinâ€Based Capsules as Blood Substitutes. Advanced Functional Materials, 2012, 22, 1446-1453.	7.8	95
192	Fabrication of Gelatin Microgels by a "Cast―Strategy for Controlled Drug Release. Advanced Functional Materials, 2012, 22, 2673-2681.	7.8	67
193	Biomedical Applications: Construction and Evaluation of Hemoglobin-Based Capsules as Blood Substitutes (Adv. Funct. Mater. 7/2012). Advanced Functional Materials, 2012, 22, 1445-1445.	7.8	0
194	Templating Assembly of Multifunctional Hybrid Colloidal Spheres. Advanced Materials, 2012, 24, 2663-2667.	11.1	72
195	Templating Assembly of Multifunctional Hybrid Colloidal Spheres (Adv. Mater. 20/2012). Advanced Materials, 2012, 24, 2662-2662.	11.1	1
196	pH―and Redoxâ€Responsive Polysaccharideâ€Based Microcapsules with Autofluorescence for Biomedical Applications. Chemistry - A European Journal, 2012, 18, 3185-3192.	1.7	102
197	An Anticoagulant Activity System Using Nanoengineered Autofluorescent Heparin Nanotubes. Chemistry - an Asian Journal, 2012, 7, 127-132.	1.7	14
198	Fabrication of glucose-sensitive protein microcapsules and their applications. Soft Matter, 2011, 7, 1571-1576.	1.2	44

#	Article	IF	CITATIONS
199	Fabrication of autofluorescent protein coated mesoporous silica nanoparticles for biological application. Chemical Communications, 2011, 47, 12167.	2.2	48
200	Large-scale preparation of 3D self-assembled iron hydroxide and oxide hierarchical nanostructures and their applications for water treatment. Journal of Materials Chemistry, 2011, 21, 11742.	6.7	116
201	Fabrication and biological application of nano-hydroxyapatite (nHA)/alginate (ALG) hydrogel as scaffolds. Journal of Materials Chemistry, 2011, 21, 2228-2236.	6.7	49
202	Side Effect Reduction of Encapsulated Hydrocortisone Crystals by Insulin/Alginate Shells. Langmuir, 2011, 27, 1499-1504.	1.6	22
203	pH-responsive polysaccharide microcapsules through covalent bonding assembly. Chemical Communications, 2011, 47, 1175-1177.	2.2	107
204	Two-dimensional polyelectrolyte hollow sphere arrays at a liquid–air interface. Soft Matter, 2011, 7, 359-362.	1.2	9
205	Interfacial Dispersion of Poly(<i>N</i> -isopropylacrylamide)/Gold Nanocomposites. Journal of Nanoscience and Nanotechnology, 2011, 11, 2052-2056.	0.9	11
206	Selfâ€Assembly of Hexagonal Peptide Microtubes and Their Optical Waveguiding. Advanced Materials, 2011, 23, 2796-2801.	11.1	173
207	Uniaxially Oriented Peptide Crystals for Active Optical Waveguiding. Angewandte Chemie - International Edition, 2011, 50, 11186-11191.	7.2	120
208	Honeycomb Selfâ€Assembled Peptide Scaffolds by the Breath Figure Method. Chemistry - A European Journal, 2011, 17, 4238-4245.	1.7	62
209	Peptide Mesocrystals as Templates to Create an Au Surface with Stronger Surfaceâ€Enhanced Raman Spectroscopic Properties. Chemistry - A European Journal, 2011, 17, 3370-3375.	1.7	59
210	Selective Recognition of Coâ€assembled Thrombin Aptamer and Docetaxel on Mesoporous Silica Nanoparticles against Tumor Cell Proliferation. Chemistry - A European Journal, 2011, 17, 13170-13174.	1.7	45
211	Quantifying the sequence–function relation in gene silencing by bacterial small RNAs. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12473-12478.	3.3	44
212	仿生微胶囊的组装åŠå…¶åº"甓. Scientia Sinica Chimica, 2011, 41, 273-280.	0.2	7
213	Biotinylated Lipid Membrane Patterns Supported by Proteins for the Recognition of Streptavidined Polystyrene Microspheres. Journal of Nanoscience and Nanotechnology, 2010, 10, 6318-6323.	0.9	1
214	Capsules with Silver Nanoparticle Enrichment Subdomains and Their Antimicrobial Properties. Chemistry - an Asian Journal, 2010, 5, 1780-1787.	1.7	20
215	Selfâ€Assembly of Peptideâ€Inorganic Hybrid Spheres for Adaptive Encapsulation of Guests. Advanced Materials, 2010, 22, 1283-1287.	11.1	182
216	Solventâ€Induced Structural Transition of Selfâ€Assembled Dipeptide: From Organogels to Microcrystals. Chemistry - A European Journal, 2010, 16, 3176-3183.	1.7	270

#	Article	IF	Citations
217	Movement of polymer microcarriers using a biomolecular motor. Biomaterials, 2010, 31, 1287-1292.	5 . 7	28
218	Self-assembly and application of diphenylalanine-based nanostructures. Chemical Society Reviews, 2010, 39, 1877.	18.7	880
219	Lipid coated mesoporous silica nanoparticles as photosensitive drug carriers. Physical Chemistry Chemical Physics, 2010, 12, 4418.	1.3	92
220	A peony-flower-like hierarchical mesocrystal formed by diphenylalanine. Journal of Materials Chemistry, 2010, 20, 6734.	6.7	78
221	Hierarchical gold/copolymer nanostructures as hydrophobic nanotanks for drug encapsulation. Journal of Materials Chemistry, 2010, 20, 7782.	6.7	53
222	Noble metal nanochains through helical self-assembly. Chemical Communications, 2010, 46, 2310.	2.2	25
223	The lectin binding and targetable cellular uptake of lipid-coated polysaccharide microcapsules. Journal of Materials Chemistry, 2010, 20, 2121.	6.7	47
224	Smart polyelectrolyte microcapsules as carriers for water-soluble small molecular drug. Journal of Controlled Release, 2009, 139, 160-166.	4.8	74
225	Layerâ€byâ€Layer Assembled Nanotubes as Biomimetic Nanoreactors for Calcium Carbonate Deposition. Macromolecular Rapid Communications, 2009, 30, 1538-1542.	2.0	23
226	Triggered release of insulin from glucose-sensitive enzyme multilayer shells. Biomaterials, 2009, 30, 2799-2806.	5.7	181
227	Smart core/shell nanocomposites: Intelligent polymers modified gold nanoparticles. Advances in Colloid and Interface Science, 2009, 149, 28-38.	7.0	245
228	Assembly of environmental sensitive microcapsules of PNIPAAm and alginate acid and their application in drug release. Journal of Colloid and Interface Science, 2009, 332, 271-279.	5.0	58
229	Self-assembly of composite nanotubes and their applications. Current Opinion in Colloid and Interface Science, 2009, 14, 115-125.	3.4	67
230	Proton Gradients Produced by Glucose Oxidase Microcapsules Containing Motor F _O F _I -ATPase for Continuous ATP Biosynthesis. Journal of Physical Chemistry B, 2009, 113, 395-399.	1.2	51
231	Assembled capsules transportation driven by motor proteins. Biochemical and Biophysical Research Communications, 2009, 379, 175-178.	1.0	23
232	Glucose-Sensitive Microcapsules from Glutaraldehyde Cross-Linked Hemoglobin and Glucose Oxidase. Biomacromolecules, 2009, 10, 1212-1216.	2.6	109
233	Formation of PANI tower-shaped hierarchical nanostructures by a limited hydrothermal reaction. Journal of Materials Chemistry, 2009, 19, 3263.	6.7	34
234	Molecular assembly and application of biomimetic microcapsules. Chemical Society Reviews, 2009, 38, 2292.	18.7	190

#	Article	IF	Citations
235	Biointerfacing luminescent nanotubes. Soft Matter, 2009, 5, 300-303.	1.2	15
236	Controlled Fabrication of Polyaniline Spherical and Cubic Shells with Hierarchical Nanostructures. ACS Nano, 2009, 3, 3714-3718.	7.3	93
237	Selfâ€Assembly of Peptideâ€Based Colloids Containing Lipophilic Nanocrystals. Small, 2008, 4, 1687-1693.	5.2	67
238	Reversible Transitions between Peptide Nanotubes and Vesicleâ€Like Structures Including Theoretical Modeling Studies. Chemistry - A European Journal, 2008, 14, 5974-5980.	1.7	151
239	Microcapsules Containing a Biomolecular Motor for ATP Biosynthesis. Advanced Materials, 2008, 20, 2933-2937.	11.1	58
240	Dynamic adsorption and characterization of phospholipid and mixed phospholipid/protein layers at liquid/liquid interfaces. Advances in Colloid and Interface Science, 2008, 140, 67-76.	7.0	62
241	Two-Stage pH Response of Poly(4-vinylpyridine) Grafted Gold Nanoparticles. Macromolecules, 2008, 41, 7254-7256.	2.2	144
242	Organogels Based on Self-Assembly of Diphenylalanine Peptide and Their Application To Immobilize Quantum Dots. Chemistry of Materials, 2008, 20, 1522-1526.	3.2	238
243	Preparation of polymer-coated mesoporous silica nanoparticles used for cellular imaging by a "graft-from―method. Journal of Materials Chemistry, 2008, 18, 5731.	6.7	132
244	Hydrothermal-Induced Structure Transformation of Polyelectrolyte Multilayers: From Nanotubes to Capsules. Langmuir, 2008, 24, 5508-5513.	1.6	51
245	Layer-by-layer assembly of magnetic polypeptide nanotubes as a DNA carrier. Journal of Materials Chemistry, 2008, 18, 748.	6.7	57
246	Fabrication of Mesoporous Titanium Oxide Nanotubes Based on Layer-by-Layer Assembly. Journal of Nanoscience and Nanotechnology, 2007, 7, 2534-2537.	0.9	11
247	Fabrication of Thermosensitive Polymer Nanopatterns through Chemical Lithography and Atom Transfer Radical Polymerization. Langmuir, 2007, 23, 3981-3987.	1.6	72
248	Fabrication of Polystyrene/Gold Nanotubes and Nanostructure-Controlled Growthof Aluminate. Journal of Nanoscience and Nanotechnology, 2007, 7, 2361-2365.	0.9	2
249	Enhanced Dispersity of Gold Nanoparticles Modified by <l>l'>-Carboxyl Alkanethiols Under the Impact of Poly(ethylene glycol)s. Journal of Nanoscience and Nanotechnology, 2007, 7, 3089-3094.</l>	0.9	13
250	Hemoglobin protein hollow shells fabricated through covalent layer-by-layer technique. Biochemical and Biophysical Research Communications, 2007, 354, 357-362.	1.0	94
251	Immobilization of glucose oxidase onto gold nanoparticles with enhanced thermostability. Biochemical and Biophysical Research Communications, 2007, 355, 488-493.	1.0	149
252	Glycolipid patterns supported by human serum albumin for E. coli recognition. Biochemical and Biophysical Research Communications, 2007, 358, 424-428.	1.0	9

#	Article	IF	Citations
253	Encapsulated photosensitive drugs by biodegradable microcapsules to incapacitate cancer cells. Journal of Materials Chemistry, 2007, 17, 4018.	6.7	99
254	Fabrication of pH-Responsive Nanocomposites of Gold Nanoparticles/Poly(4-vinylpyridine). Chemistry of Materials, 2007, 19, 412-417.	3.2	232
255	Synthesis and <i>in vitro</i> Behavior of Multivalent Cationic Lipopeptide for DNA Delivery and Release in HeLa Cells. Bioconjugate Chemistry, 2007, 18, 1735-1738.	1.8	23
256	Thermosensitive Copolymer Networks Modify Gold Nanoparticles for Nanocomposite Entrapment. Chemistry - A European Journal, 2007, 13, 2224-2229.	1.7	121
257	Transition of Cationic Dipeptide Nanotubes into Vesicles and Oligonucleotide Delivery. Angewandte Chemie - International Edition, 2007, 46, 2431-2434.	7.2	306
258	Adenosine Triphosphate Biosynthesis Catalyzed by F _o F ₁ ATP Synthase Assembled in Polymer Microcapsules. Angewandte Chemie - International Edition, 2007, 46, 6996-7000.	7.2	77
259	Adenosine Triphosphate Biosynthesis Catalyzed by F _o F ₁ ATP Synthase Assembled in Polymer Microcapsules. Angewandte Chemie, 2007, 119, 7126-7130.	1.6	21
260	Hydrolysis characterization of phospholipid monolayers catalyzed by different phospholipases at the airâ€"water interface. Advances in Colloid and Interface Science, 2007, 131, 91-98.	7.0	32
261	Fabrication of Controlled Thermosensitive Polymer Nanopatterns with Oneâ€Pot Polymerization Through Chemical Lithography. Small, 2007, 3, 1860-1865.	5.2	58
262	Assembled alginate/chitosan nanotubes for biological application. Biomaterials, 2007, 28, 3083-3090.	5.7	130
263	Fabrication of Protein Nanotubes Based on Layer-by-Layer Assembly. Biomacromolecules, 2006, 7, 2539-2542.	2.6	88
264	Fabrication of Fluorescent Nanotubes Based on Layer-by-Layer Assembly via Covalent Bond. Langmuir, 2006, 22, 360-362.	1.6	78
265	Synthesis of PNIPAM-co-MBAA Copolymer Nanotubes with Composite Control. Langmuir, 2006, 22, 8205-8208.	1.6	36
266	pH Controlled Permeability of Lipid/Protein Biomimetic Microcapsules. Biomacromolecules, 2006, 7, 580-585.	2.6	116
267	Human serum albumin supported lipid patterns for the targeted recognition of microspheres coated by membrane based on ss-DNA hybridization. Biochemical and Biophysical Research Communications, 2006, 349, 920-924.	1.0	13
268	Mechanical Property of Lipid-Coated Polyelectrolyte Microcapsules. Journal of Nanoscience and Nanotechnology, 2006, 6, 2489-2493.	0.9	5
269	Fabrication of Polyethyleneimine and Poly(styrene-<1>alt 1 -maleic anhydride) Nanotubes Through Covalent Bond. Journal of Nanoscience and Nanotechnology, 2006, 6, 2072-2076.	0.9	20
270	Nanorods assembly of polystyrene under theta condition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 275, 218-220.	2.3	6

#	Article	IF	Citations
271	Assembly of Nanotubes of Poly(4-vinylpyridine) and Poly(acrylic acid) through Hydrogen Bonding. Chemistry - A European Journal, 2006, 12, 4808-4812.	1.7	59
272	Template-Synthesized Nanotubes Through Layer-by-Layer Assembly Under Charge Interaction. Journal of Nanoscience and Nanotechnology, 2006, 6, 1552-1556.	0.9	18
273	Self-Assembled Molecular Pattern by Chemical Lithography and Interfacial Chemical Reactions. Journal of Nanoscience and Nanotechnology, 2006, 6, 1838-1841.	0.9	9
274	Morphosynthesis of microskeletal silica spheres templated by W/O microemulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 256, 57-60.	2.3	14
275	Effect of alkyl chain length on phase transfer of surfactant capped Au nanoparticles across the water/toluene interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 256, 17-20.	2.3	32
276	Comparative investigation of structure characteristics of mixed \hat{l}^2 -lactoglobulin and different chain-length phophatidylcholine monolayer at the air/water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 257-258, 127-131.	2.3	7
277	Small angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) studies of amide phospholipids. Chemistry and Physics of Lipids, 2005, 133, 79-88.	1.5	7
278	Impact of inhibiting activity of indole inhibitors on phospholipid hydrolysis by phospholipase A2. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 256, 51-55.	2.3	6
279	One step synthesis and phase transition of phospholipid-modified Au particles into toluene. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 257-258, 411-414.	2.3	19
280	Synthesis of Thermosensitive PNIPAM-co-MBAA Nanotubes by Atom Transfer Radical Polymerization within a Porous Membrane. Macromolecular Rapid Communications, 2005, 26, 1552-1556.	2.0	64
281	Conductive Polypyrrole and Poly(allylamine hydrochloride) Nanotubes Fabricated with Layer-by-Layer Assembly. Macromolecular Rapid Communications, 2005, 26, 1965-1969.	2.0	32
282	Hydrolysis Reaction Analysis ofl- $\hat{l}\pm$ -Distearoylphosphatidylcholine Monolayer Catalyzed by Phospholipase A2with Polarization-Modulated Infrared Reflection Absorption Spectroscopy. Langmuir, 2005, 21, 1051-1054.	1.6	23
283	Molecular assembly of biomimetic microcapsules. Soft Matter, 2005, 1, 259.	1.2	82
284	Layer-by-Layer Assembly of Human Serum Albumin and Phospholipid Nanotubes Based on a Template. Langmuir, 2005, 21, 1679-1682.	1.6	80
285	Fabrication and Characterization of Human Serum Albumin andl-α-Dimyristoylphosphatidic Acid Microcapsules Based on Template Technique. Chemistry of Materials, 2005, 17, 2514-2519.	3.2	46
286	Self-Assembly, Optical Behavior, and Permeability of a Novel Capsule Based on an Azo Dye and Polyelectrolytes. Chemistry - A European Journal, 2004, 10, 3397-3403.	1.7	98
287	Self-Assembly of Human Serum Albumin (HSA) andl-α-Dimyristoylphosphatidic Acid (DMPA) Microcapsules for Controlled Drug Release. Chemistry - A European Journal, 2004, 10, 5848-5852.	1.7	70
288	Self-assembly and properties of phthalocyanine and polyelectrolytes onto melamine resin particles. New Journal of Chemistry, 2004, 28, 1579-1583.	1.4	10

#	Article	IF	CITATIONS
289	Microcapsule Assembly of Human Serum Albumin at the Liquid/Liquid Interface by the Pendent Drop Technique. Langmuir, 2004, 20, 8401-8403.	1.6	38
290	Structural Changes of Phospholipid Monolayers Caused by Coupling of Human Serum Albumin:  A GIXD Study at the Air/Water Interface. Journal of Physical Chemistry B, 2004, 108, 14171-14177.	1.2	35
291	Self-assembly and Characterization of Polypyrrole and Polyallylamine Multilayer Films and Hollow Shells. Chemistry of Materials, 2004, 16, 3677-3681.	3.2	34
292	Direct Visualization of the Dynamic Hydrolysis Process of anl-DPPC Monolayer Catalyzed by Phospholipase D at the Air/Water Interface. Journal of Physical Chemistry B, 2004, 108, 473-476.	1.2	17
293	Thermodynamics and Structures of Amide Phospholipid Monolayers. Journal of Physical Chemistry B, 2004, 108, 13475-13480.	1.2	22
294	Biogenic capsules made of proteins and lipids. Biochemical and Biophysical Research Communications, 2004, 315, 224-227.	1.0	17
295	Biointerfacing Polyelectrolyte Microcapsules. ChemPhysChem, 2003, 4, 1351-1355.	1.0	23
296	Self-Organization of an L-Ether-amide Phospholipid in Large Two-Dimensional Chiral Crystals. ChemPhysChem, 2003, 4, 1355-1358.	1.0	7
297	Phospholipase A2 Hydrolysis of Mixed Phospholipid Vesicles Formed on Polyelectrolyte Hollow Capsules. Chemistry - A European Journal, 2003, 9, 2589-2594.	1.7	46
298	Direct Observations of the Cleavage Reaction of an L-DPPC Monolayer Catalyzed by Phospholipase A2 and Inhibited by an Indole Inhibitor at the Air/Water Interface. ChemBioChem, 2003, 4, 299-305.	1.3	19
299	Forming process of folded drop surface covered by human serum albumin, \hat{l}^2 -lactoglobulin and \hat{l}^2 -casein, respectively, at the chloroform/water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 215, 25-32.	2.3	24
300	Stabilized complex film formed by co-adsorption of \hat{l}^2 -lactoglobulin and phospholipids at liquid/liquid interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 223, 11-16.	2.3	22
301	Phospholipid liposomes stabilized by the coverage of polyelectrolyte. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 221, 49-53.	2.3	51
302	Highly Flexible Polyelectrolyte Nanotubes. Journal of the American Chemical Society, 2003, 125, 11140-11141.	6.6	234
303	Synthesis and Characterization of Wormlike Mesoporous Silica by Using Polyelectrolyte/Surfactant Complexes as Templates. Langmuir, 2003, 19, 10353-10356.	1.6	17
304	Phase Transition and Domain Morphology in Langmuir Monolayers of a Calix[4]arene Derivative Containing No Alkyl Chain. Langmuir, 2003, 19, 385-392.	1.6	15
305	Dynamic and morphological investigation of phospholipid monolayer hydrolysis by phospholipase C. Biochemical and Biophysical Research Communications, 2003, 300, 541-545.	1.0	19
306	Polymer-stabilized phospholipid vesicles formed on polyelectrolyte multilayer capsules. Biochemical and Biophysical Research Communications, 2003, 303, 653-659.	1.0	54

#	Article	IF	CITATIONS
307	Morphological investigation of mixed protein/phospholipid monolayers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 201, 123-129.	2.3	11
308	Monolayers of Novel Calix[4]arene Derivative and Its Palladium(II) Complexes Formed at the Airâ^'Water Interface. Langmuir, 2001, 17, 1143-1149.	1.6	22
309	Structure characterization and stability of mixed lipid/protein monolayer at the air/water interface. Journal of Molecular Liquids, 2001, 90, 149-156.	2.3	14
310	Dynamic Observations of the Hydrolysis of a DPPC Monolayer at the Air/Water Interface Catalyzed by Phospholipaseâ€A2. Angewandte Chemie - International Edition, 2000, 39, 3059-3062.	7.2	43
311	The aggregation and phase separation behavior of a hydrophobically modified poly(N-isopropylacrylamide). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 175, 41-49.	2.3	22
312	pH value and ionic strength effects on the adsorption kinetics of protein/phospholipid at the chloroform/water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 175, 61-66.	2.3	11
313	Stability investigation of the mixed DPPC/protein monolayer at the air–water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 175, 77-82.	2.3	22
314	The structure and dynamic properties of mixed adsorption and penetration layers of $\hat{l}\pm$ -dipalmitoylphosphatidylcholine/ \hat{l}^2 -lactoglobulin at water/fluid interfaces. Colloids and Surfaces B: Biointerfaces, 1999, 15, 289-295.	2.5	22
315	Adsorption Kinetics of Phospholipids at the Chloroform/Water Interface Studied by Drop Volume and Pendant Drop Techniques. Langmuir, 1996, 12, 5138-5142.	1.6	41
316	Characterisation of phospholipid layers at liquid interfaces 2. Comparison of isotherms of insoluble and soluble films of phospholipids at different fluid/water interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 114, 123-130.	2.3	34
317	Phospholipid monolayers and their dynamic interfacial behaviour studied by axisymmetric drop shape analysis. Thin Solid Films, 1996, 284-285, 357-360.	0.8	16
318	Characterisation of phospholipid layers at liquid interfaces. 1. Dynamics of adsorption of phospholipids at the chloroform/water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 114, 113-121.	2.3	48
319	Characterisation of phospholipid layers at liquid interfaces. 3. Relaxation of spreading phospholipid monolayers under harmonic area changes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 114, 277-285.	2.3	30
320	Use of pendent drop technique as a film balance at liquid/liquid interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 96, 295-299.	2.3	41
321	Black Phosphorus Nanosheets Enhance Photophosphorylation by Positive Feedback. Chinese Journal of Chemistry, 0, , .	2.6	3