
Martin Kalbac

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2190790/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of structural properties on (de-)intercalation of ClO4â^' anion in graphite from concentrated aqueous electrolyte. Carbon, 2022, 186, 612-623.	10.3	10
2	Highly Sensitive Room-Temperature Ammonia Sensors Based on Single-Wall Carbon Nanotubes Modified by PEDOT. IEEE Sensors Journal, 2022, 22, 3024-3032.	4.7	9
3	Localized Spectroelectrochemical Identification of Basal Plane and Defect-Related Charge-Transfer Processes in Graphene. Journal of Physical Chemistry Letters, 2022, 13, 642-648.	4.6	8
4	Activation of Raman modes in monolayer transition metal dichalcogenides through strong interaction with gold. Physical Review B, 2022, 105, .	3.2	9
5	Evolution of the Raman 2D' mode in monolayer graphene during electrochemical doping. Microchemical Journal, 2022, 181, 107739.	4.5	3
6	Towards Catalytically Active Porous Graphene Membranes with Pulsed Laser Deposited Ceria Nanoparticles. Chemistry - A European Journal, 2021, 27, 4150-4158.	3.3	4
7	Crystallization of 2D Hybrid Organic–Inorganic Perovskites Templated by Conductive Substrates. Advanced Functional Materials, 2021, 31, 2009007.	14.9	14
8	The use of sample positioning to control defect creation by oxygen plasma in isotopically labelled bilayer graphene membranes. RSC Advances, 2021, 11, 10316-10322.	3.6	3
9	Chemical vapor deposition (CVD) growth of graphene films. , 2021, , 199-222.		4
10	Strong localization effects in the photoluminescence of transition metal dichalcogenide heterobilayers. 2D Materials, 2021, 8, 025028.	4.4	19
11	Thermal Traits of MNPs under High-Frequency Magnetic Fields: Disentangling the Effect of Size and Coating. Nanomaterials, 2021, 11, 797.	4.1	2
12	Superradiant Emission from Coherent Excitons in van Der Waals Heterostructures. Advanced Functional Materials, 2021, 31, 2102196.	14.9	12
13	Reversible Lectin Binding to Glycan-Functionalized Graphene. International Journal of Molecular Sciences, 2021, 22, 6661.	4.1	1
14	Two-Dimensional CVD-Graphene/Polyaniline Supercapacitors: Synthesis Strategy and Electrochemical Operation. ACS Applied Materials & Interfaces, 2021, 13, 34686-34695.	8.0	30
15	Fluorination of graphene leads to susceptibility for nanopore formation by highly charged ion impact. Physical Review Materials, 2021, 5, .	2.4	7
16	Optical Near-Field Electron Microscopy. Physical Review Applied, 2021, 16, .	3.8	5
17	Highly sensitive broadband binary photoresponse in gateless epitaxial graphene on 4H–SiC. Carbon, 2021, 184, 72-81.	10.3	13
18	Electron-phonon coupling origin of the graphene π* -band kink via isotope effect. Physical Review B, 2021, 103, .	3.2	3

#	Article	IF	CITATIONS
19	Hierarchical TiO2 Layers Prepared by Plasma Jets. Nanomaterials, 2021, 11, 3254.	4.1	2
20	Towards the evaluation of defects in MoS ₂ using cryogenic photoluminescence spectroscopy. Nanoscale, 2020, 12, 3019-3028.	5.6	37
21	Coexistence of Van Hove singularities and pseudomagnetic fields in modulated graphene bilayer. Nanotechnology, 2020, 31, 165705.	2.6	2
22	Neutron Activated ¹⁵³ Sm Sealed in Carbon Nanocapsules for <i>in Vivo</i> Imaging and Tumor Radiotherapy. ACS Nano, 2020, 14, 129-141.	14.6	37
23	Host–Guest Interactions in Metal–Organic Frameworks Doped with Acceptor Molecules as Revealed by Resonance Raman Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 24245-24250.	3.1	22
24	Rippled Metallicâ€Nanowire/Graphene/Semiconductor Nanostack for a Gateâ€Tunable Ultrahighâ€Performance Stretchable Phototransistor. Advanced Optical Materials, 2020, 8, 2000859.	7.3	5
25	Anomalous Freezing of Low-Dimensional Water Confined in Graphene Nanowrinkles. ACS Nano, 2020, 14, 15587-15594.	14.6	14
26	Strain and Piezo-Doping Mismatch between Graphene Layers. Journal of Physical Chemistry C, 2020, 124, 11193-11199.	3.1	15
27	Periodic surface functional group density on graphene via laser-induced substrate patterning at Si/SiO2 interface. Nano Research, 2020, 13, 2332-2339.	10.4	14
28	Chemical Vapor Deposition of MoS ₂ for Energy Harvesting: Evolution of the Interfacial Oxide Layer. ACS Applied Nano Materials, 2020, 3, 6563-6573.	5.0	10
29	Graphene-enhanced Raman scattering on single layer and bilayers of pristine and hydrogenated graphene. Scientific Reports, 2020, 10, 4516.	3.3	18
30	S- and N-doped graphene-based catalysts for the oxygen evolution reaction. Electrochimica Acta, 2020, 340, 135975.	5.2	16
31	Charge transfer in steam purified arc discharge single walled carbon nanotubes filled with lutetium halides. Physical Chemistry Chemical Physics, 2020, 22, 10063-10075.	2.8	7
32	Large scale chemical functionalization of locally curved graphene with nanometer resolution. Carbon, 2020, 164, 207-214.	10.3	9
33	Transferless Inverted Graphene/Silicon Heterostructures Prepared by Plasma-Enhanced Chemical Vapor Deposition of Amorphous Silicon on CVD Graphene. Nanomaterials, 2020, 10, 589.	4.1	3
34	Introduction to Raman Spectroscopy of Chemically Functionalized CVD Graphene. , 2020, , 1-17.		1
35	Surface-Confined Macrocyclization <i>via</i> Dynamic Covalent Chemistry. ACS Nano, 2020, 14, 2956-2965.	14.6	8
36	On the Suitability of Raman Spectroscopy to Monitor the Degree of Graphene Functionalization by Diazonium Salts. Journal of Physical Chemistry C, 2019, 123, 22397-22402.	3.1	14

#	Article	IF	CITATIONS
37	Superlattice in collapsed graphene wrinkles. Scientific Reports, 2019, 9, 9972.	3.3	15
38	Thermoreversible magnetic nanochains. Nanoscale, 2019, 11, 16773-16780.	5.6	14
39	Imaging Nanoscale Inhomogeneities and Edge Delamination in Asâ€Grown MoS ₂ Using Tipâ€Enhanced Photoluminescence. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900381.	2.4	12
40	Dynamic covalent conjugated polymer epitaxy on graphene. Journal of Materials Chemistry C, 2019, 7, 12240-12247.	5.5	7
41	A tool box to ascertain the nature of doping and photoresponse in single-walled carbon nanotubes. Physical Chemistry Chemical Physics, 2019, 21, 4063-4071.	2.8	9
42	Introducing Well-Defined Nanowrinkles in CVD Grown Graphene. Nanomaterials, 2019, 9, 353.	4.1	3
43	Strong and efficient doping of monolayer MoS ₂ by a graphene electrode. Physical Chemistry Chemical Physics, 2019, 21, 25700-25706.	2.8	20
44	Laser-ablation-assisted SF6 decomposition for extensive and controlled fluorination of graphene. Carbon, 2019, 145, 419-425.	10.3	25
45	Electronic and mechanical response of graphene on BaTiO3at martensitic phase transitions. Journal of Physics Condensed Matter, 2018, 30, 085001.	1.8	1
46	Selective self-assembly and light emission tuning of layered hybrid perovskites on patterned graphene. Nanoscale, 2018, 10, 3198-3211.	5.6	6
47	Evaluating arbitrary strain configurations and doping in graphene with Raman spectroscopy. 2D Materials, 2018, 5, 015016.	4.4	95
48	Surfaceâ€enhanced Raman spectra on graphene. Journal of Raman Spectroscopy, 2018, 49, 168-173.	2.5	13
49	Adsorption Site-Dependent Mobility Behavior in Graphene Exposed to Gas Oxygen. Journal of Physical Chemistry C, 2018, 122, 21493-21499.	3.1	7
50	Excitation Wavelength Dependence of Combined Surface- and Graphene-Enhanced Raman Scattering Experienced by Free-Base Phthalocyanine Localized on Single-Layer Graphene-Covered Ag Nanoparticle Arrays. Journal of Physical Chemistry C, 2018, 122, 20850-20860.	3.1	6
51	Proton-Gradient-Driven Oriented Motion of Nanodiamonds Grafted to Graphene by Dynamic Covalent Bonds. ACS Nano, 2018, 12, 7141-7147.	14.6	17
52	Comparative study of shortening and cutting strategies of single-walled and multi-walled carbon nanotubes assessed byAscanning electron microscopy. Carbon, 2018, 139, 922-932.	10.3	34
53	Functionalization of Hydrogenated Chemical Vapour Deposition-Grown Graphene by On-Surface Chemical Reactions. Chemistry - A European Journal, 2017, 23, 4022-4022.	3.3	0
54	Temperature-induced evolution of strain and doping in an isotopically labeled two-dimensional graphene - C70 fullerene peapod. Diamond and Related Materials, 2017, 75, 140-145.	3.9	4

#	Article	IF	CITATIONS
55	Fine tuning of optical transition energy of twisted bilayer graphene via interlayer distance modulation. Physical Review B, 2017, 95, .	3.2	12
56	Temperature-induced strain release via rugae on the nanometer and micrometer scale in graphene monolayer. Carbon, 2017, 119, 483-491.	10.3	13
57	SERS of Isotopically Labeled ¹² C/ ¹³ C Graphene Bilayer–Gold Nanostructured Film Hybrids: Graphene Layer as Spacer and SERS Probe. Journal of Physical Chemistry C, 2017, 121, 11680-11686.	3.1	8
58	High-quality PVD graphene growth by fullerene decomposition on Cu foils. Carbon, 2017, 119, 535-543.	10.3	29
59	Tuning the electronic properties of monolayer and bilayer transition metal dichalcogenide compounds under direct out-of-plane compression. Physical Chemistry Chemical Physics, 2017, 19, 13333-13340.	2.8	20
60	Enhanced Raman scattering on functionalized graphene substrates. 2D Materials, 2017, 4, 025087.	4.4	14
61	Tuning the Reactivity of Graphene by Surface Phase Orientation. Chemistry - A European Journal, 2017, 23, 1839-1845.	3.3	15
62	Photovoltaic characterization of graphene/silicon Schottky junctions from local and macroscopic perspectives. Chemical Physics Letters, 2017, 676, 82-88.	2.6	9
63	Extended characterization methods for covalent functionalization of graphene on copper. Carbon, 2017, 118, 200-207.	10.3	19
64	Functionalization of Hydrogenated Chemical Vapour Depositionâ€Grown Graphene by Onâ€6urface Chemical Reactions. Chemistry - A European Journal, 2017, 23, 4073-4078.	3.3	8
65	Mastering the Wrinkling of Self-supported Graphene. Scientific Reports, 2017, 7, 10003.	3.3	33
66	Raman excitation profiles of hybrid systems constituted by singleâ€layer graphene and free base phthalocyanine: Manifestations of two mechanisms of grapheneâ€enhanced Raman scattering. Journal of Raman Spectroscopy, 2017, 48, 1270-1281.	2.5	9
67	Tuning the Interlayer Interaction of a Twisted Multilayer Wrinkle With Temperature. Physica Status Solidi (B): Basic Research, 2017, 254, 1700237.	1.5	2
68	Surface enhanced infrared absorption spectroscopy for graphene functionalization on copper. Carbon, 2017, 124, 250-255.	10.3	9
69	Reversibility of Grapheneâ€Enhanced Raman Scattering with Fluorinated Graphene. Physica Status Solidi (B): Basic Research, 2017, 254, 1700177.	1.5	4
70	Effect of Ethanethiolate Spacer on Morphology and Optical Responses of Ag Nanoparticle Array–Single Layer Graphene Hybrid Systems. Langmuir, 2017, 33, 14414-14424.	3.5	5
71	EDOT polymerization at photolithographically patterned functionalized graphene. Carbon, 2017, 113, 33-39.	10.3	9
72	Covalent Reactions on Chemical Vapor Deposition Grown Graphene Studied by Surfaceâ€Enhanced Raman Spectroscopy. Chemistry - A European Journal, 2016, 22, 5404-5408.	3.3	33

#	Article	IF	CITATIONS
73	Decomposition of Fluorinated Graphene under Heat Treatment. Chemistry - A European Journal, 2016, 22, 8990-8997.	3.3	19
74	Electrochemical charging of the singleâ€layer graphene membrane. Physica Status Solidi (B): Basic Research, 2016, 253, 2331-2335.	1.5	4
75	Addressing Raman features of individual layers in isotopically labeled Bernal stacked bilayer graphene. 2D Materials, 2016, 3, 025022.	4.4	8
76	Quenching of photoluminescence of Rhodamine 6G molecules on functionalized graphene. Physica Status Solidi (B): Basic Research, 2016, 253, 2347-2350.	1.5	6
77	Do defects enhance fluorination of graphene?. RSC Advances, 2016, 6, 81471-81476.	3.6	10
78	Graphene under direct compression: Stress effects and interlayer coupling. Physica Status Solidi (B): Basic Research, 2016, 253, 2336-2341.	1.5	7
79	Monitoring the doping of graphene on SiO ₂ /Si substrates during the thermal annealing process. RSC Advances, 2016, 6, 72859-72864.	3.6	24
80	Temperature dependence of the 2D′ mode of an isotopically labelled graphene double layer. Physica Status Solidi (B): Basic Research, 2016, 253, 2342-2346.	1.5	0
81	Stress and charge transfer in uniaxially strained CVD graphene. Physica Status Solidi (B): Basic Research, 2016, 253, 2355-2361.	1.5	12
82	Nanocarbon Allotropes-Graphene and Nanocrystalline Diamond-Promote Cell Proliferation. Small, 2016, 12, 2499-2509.	10.0	27
83	Effect of Steamâ€Treatment Time on the Length and Structure of Singleâ€Walled and Doubleâ€Walled Carbon Nanotubes. ChemNanoMat, 2016, 2, 108-116.	2.8	11
84	NO2 sensor with a graphite nanopowder working electrode. Sensors and Actuators B: Chemical, 2016, 226, 299-304.	7.8	6
85	Addressing asymmetry of the charge and strain in a two-dimensional fullerene peapod. Nanoscale, 2016, 8, 735-740.	5.6	6
86	Effect of layer number and layer stacking registry on the formation and quantification of defects in graphene. Carbon, 2016, 98, 592-598.	10.3	16
87	Thermally Tunable Dual Emission of the d ⁸ –d ⁸ Dimer [Pt ₂ (î¼-P ₂ O ₅ (BF ₂) ₂) ₄] ^{4‑ Inorganic Chemistry, 2016, 55, 2441-2449.}	ʻ≪∦soup>.	42
88	Magnetic impurities in single-walled carbon nanotubes and graphene: a review. Analyst, The, 2016, 141, 2639-2656.	3.5	32
89	Selective and Scalable Chemical Removal of Thin Singleâ€Walled Carbon Nanotubes from their Mixtures with Doubleâ€Walled Carbon Nanotubes. Chemistry - A European Journal, 2015, 21, 16147-16153.	3.3	0
90	Temperature-induced strain and doping in monolayer and bilayer isotopically labeled graphene. Physical Review B, 2015, 92, .	3.2	52

#	Article	IF	CITATIONS
91	Graphene wrinkling induced by monodisperse nanoparticles: facile control and quantification. Scientific Reports, 2015, 5, 15061.	3.3	35
92	Raman spectroscopy and AFM study of ¹² C graphene/fullerenes C ₇₀ / ¹³ C graphene heterostructure. Physica Status Solidi (B): Basic Research, 2015, 252, 2418-2422.	1.5	2
93	Fluorination of Isotopically Labeled Turbostratic and Bernal Stacked Bilayer Graphene. Chemistry - A European Journal, 2015, 21, 1081-1087.	3.3	25
94	Multipurpose Nature of Rapid Covalent Functionalization on Carbon Nanotubes. Chemistry - A European Journal, 2015, 21, 18631-18641.	3.3	15
95	Evolution of temperature-induced strain and doping of double-layer graphene: An <i>in situ</i> Raman spectral mapping study. Physica Status Solidi (B): Basic Research, 2015, 252, 2401-2406.	1.5	10
96	Formation of wrinkles on graphene induced by nanoparticles: Atomic force microscopy study. Carbon, 2015, 95, 573-579.	10.3	21
97	Raman Spectroscopy and <i>in Situ</i> Raman Spectroelectrochemistry of Isotopically Engineered Graphene Systems. Accounts of Chemical Research, 2015, 48, 111-118.	15.6	55
98	Temperature and face dependent copper–graphene interactions. Carbon, 2015, 93, 793-799.	10.3	24
99	Study of Adenine and Guanine Oxidation Mechanism by Surface-Enhanced Raman Spectroelectrochemistry. Journal of Physical Chemistry C, 2015, 119, 8191-8198.	3.1	34
100	Analysis of metal catalyst content in magnetically filtered SWCNTs by SQUID magnetometry. Journal of Materials Science, 2015, 50, 2544-2553.	3.7	7
101	Single Layer Molybdenum Disulfide under Direct Out-of-Plane Compression: Low-Stress Band-Gap Engineering. Nano Letters, 2015, 15, 3139-3146.	9.1	75
102	Strain Assessment in Graphene Through the Raman 2D′ Mode. Journal of Physical Chemistry C, 2015, 119, 25651-25656.	3.1	38
103	Preparation and Charge-Transfer Study in a Single-Walled Carbon Nanotube Functionalized with Poly(3,4-ethylenedioxythiophene). Journal of Physical Chemistry C, 2015, 119, 21538-21546.	3.1	11
104	Thermal treatment of fluorinated graphene: An in situ Raman spectroscopy study. Carbon, 2015, 84, 347-354.	10.3	27
105	Graphene field effect transistor as a probe of electronic structure and charge transfer at organic molecule–graphene interfaces. Nanoscale, 2015, 7, 1471-1478.	5.6	34
106	High-quality graphene on single crystal Ir(1 1 1) films on Si(1 1 1) wafers: Synthesis and multi-spectroscopic characterization. Carbon, 2015, 81, 167-173.	10.3	11
107	Doping of C ₇₀ fullerene peapods with lithium vapor: Raman spectroscopic and Raman spectroscopic and Raman spectroelectrochemical studies. Nanotechnology, 2014, 25, 485706.	2.6	4
108	Modulated surface of single-layer graphene controls cell behavior. Carbon, 2014, 72, 207-214.	10.3	10

#	Article	IF	CITATIONS
109	Interaction between graphene and copper substrate: The role of lattice orientation. Carbon, 2014, 68, 440-451.	10.3	180
110	Chemical vapor deposition (CVD) growth of graphene films. , 2014, , 27-49.		11
111	Extreme electrochemical doping of a graphene–polyelectrolyte heterostructure. RSC Advances, 2014, 4, 11311.	3.6	7
112	The effect of a thin gold layer on graphene: a Raman spectroscopy study. RSC Advances, 2014, 4, 60929-60935.	3.6	22
113	Towards quantification of the ratio of the single and double wall carbon nanotubes in their mixtures: An in situ Raman spectroelectrochemical study. Carbon, 2014, 78, 366-373.	10.3	6
114	Carbon isotope labelling in graphene research. Nanoscale, 2014, 6, 6363.	5.6	38
115	Heating Isotopically Labeled Bernal Stacked Graphene: A Raman Spectroscopy Study. Journal of Physical Chemistry Letters, 2014, 5, 549-554.	4.6	33
116	Selfâ€ordering of iron oxide nanoparticles covered by graphene. Physica Status Solidi (B): Basic Research, 2014, 251, 2499-2504.	1.5	2
117	Growth of adlayers studied by fluorination of isotopically engineered graphene. Physica Status Solidi (B): Basic Research, 2014, 251, 2505-2508.	1.5	5
118	Hydrothermal preparation of hydrophobic and hydrophilic nanoparticles of iron oxide and a modification with CM-dextran. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	10
119	Raman spectroscopy of graphene at high pressure: Effects of the substrate and the pressure transmitting media. Physical Review B, 2013, 88, .	3.2	56
120	Structure and magnetic response of a residual metal catalyst in highly purified single walled carbon nanotubes. Physical Chemistry Chemical Physics, 2013, 15, 5992.	2.8	9
121	Ionâ€Irradiationâ€Induced Defects in Isotopicallyâ€Labeled Two Layered Graphene: Enhanced Inâ€Situ Annealing of the Damage. Advanced Materials, 2013, 25, 1004-1009.	21.0	79
122	Rapid Identification of Stacking Orientation in Isotopically Labeled Chemical-Vapor Grown Bilayer Graphene by Raman Spectroscopy. Nano Letters, 2013, 13, 1541-1548.	9.1	146
123	Raman spectroscopy investigation of defect occurrence in graphene grown on copper single crystals. Physica Status Solidi (B): Basic Research, 2013, 250, 2653-2658.	1.5	7
124	Raman spectroscopy of strongly doped CVD-graphene. Physica Status Solidi (B): Basic Research, 2013, 250, 2659-2661.	1.5	6
125	Mass-related inversion symmetry breaking and phonon self-energy renormalization in isotopically labeled AB-stacked bilayer graphene. Scientific Reports, 2013, 3, 2061. Isotopic <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>3.3</td><td>17</td></mml:math>	3.3	17
126	display="inline"> <mml:msup><mml:mrow /><mml:mn>13</mml:mn></mml:mrow </mml:msup> C/ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msup><mml:mrow /><mml:mn>12</mml:mn></mml:mrow </mml:msup>C effect on the resonant Raman spectrum of twisted bilayer graphene. Physical Review B, 2013, 88, .</mml:math 	3.2	13

#	Article	IF	CITATIONS
127	Doping of bi-layer graphene by gradually polarizing a ferroelectric polymer. Physica Status Solidi (B): Basic Research, 2013, 250, 2649-2652.	1.5	4
128	Ordered graphene strips onto polymer backing prepared by laser scanning. Applied Physics Letters, 2012, 101, 173102.	3.3	1
129	Effects of intercalation and inhomogeneous filling on the collapse pressure of double-wall carbon nanotubes. Physical Review B, 2012, 86, .	3.2	20
130	Raman spectroscopy of isotopically labeled twoâ€layer graphene. Physica Status Solidi (B): Basic Research, 2012, 249, 2500-2502.	1.5	3
131	Influence of oxygen and hydrogen treated graphene on cell adhesion in the presence or absence of fetal bovine serum. Physica Status Solidi (B): Basic Research, 2012, 249, 2503-2506.	1.5	6
132	Raman Spectroscopy as a Tool to Address Individual Graphene Layers in Few-Layer Graphene. Journal of Physical Chemistry C, 2012, 116, 19046-19050.	3.1	37
133	Effects of Heat Treatment on Raman Spectra of Two‣ayer ¹² C/ ¹³ C Graphene. Chemistry - A European Journal, 2012, 18, 13877-13884.	3.3	34
134	Influence of the fetal bovine serum proteins on the growth of human osteoblast cells on graphene. Journal of Biomedical Materials Research - Part A, 2012, 100A, 3001-3007.	4.0	31
135	Large Variations of the Raman Signal in the Spectra of Twisted Bilayer Graphene on a BN Substrate. Journal of Physical Chemistry Letters, 2012, 3, 796-799.	4.6	30
136	The control of graphene double-layer formation in copper-catalyzed chemical vapor deposition. Carbon, 2012, 50, 3682-3687.	10.3	120
137	Magnetic Properties of Iron Catalyst Particles in HiPco Single Wall Carbon Nanotubes. Journal of Physical Chemistry C, 2011, 115, 17303-17309.	3.1	20
138	Observation of Electronic Raman Scattering in Metallic Carbon Nanotubes. Physical Review Letters, 2011, 107, 157401.	7.8	44
139	Surface refinement and electronic properties of graphene layers grown on copper substrate: An XPS, UPS and EELS study. Applied Surface Science, 2011, 257, 9785-9790.	6.1	185
140	Raman Spectroscopy and in Situ Raman Spectroelectrochemistry of Bilayer ¹² C/ ¹³ C Graphene. Nano Letters, 2011, 11, 1957-1963.	9.1	104
141	Charging of Selfâ€Doped Poly(Anilineboronic Acid) Films Studied by in Situ ESR/UV/Vis/NIR Spectroelectrochemistry and ex Situ FTIR Spectroscopy. ChemPhysChem, 2011, 12, 2920-2924.	2.1	9
142	Probing Charge Transfer between Shells of Doubleâ€Walled Carbon Nanotubes Sorted by Outerâ€Wall Electronic Type. Chemistry - A European Journal, 2011, 17, 9806-9815.	3.3	26
143	Controlled oxygen plasma treatment of single-walled carbon nanotube films improves osteoblastic cells attachment and enhances their proliferation. Carbon, 2011, 49, 2926-2934.	10.3	25
144	Defects in Individual Semiconducting Single Wall Carbon Nanotubes: Raman Spectroscopic and in Situ Raman Spectroelectrochemical Study. Nano Letters, 2010, 10, 4619-4626.	9.1	79

#	Article	IF	CITATIONS
145	Sexithiophene Encapsulated in a Singleâ€Walled Carbon Nanotube: An In Situ Raman Spectroelectrochemical Study of a Peapod Structure. Chemistry - A European Journal, 2010, 16, 11753-11759.	3.3	39
146	The influence of doping on the Raman intensity of the D band in single walled carbon nanotubes. Carbon, 2010, 48, 832-838.	10.3	31
147	Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells. Carbon, 2010, 48, 4323-4329.	10.3	394
148	Evaluation of defect concentration in doped SWCNT. Physica Status Solidi (B): Basic Research, 2010, 247, 2797-2800.	1.5	4
149	Chiral angle dependence of resonance window widths in (2n+m) families of single-walled carbon nanotubes. Applied Physics Letters, 2010, 96, .	3.3	8
150	An Anomalous Enhancement of the Ag(2) Mode in the Resonance Raman Spectra of C60 Embedded in Single-Walled Carbon Nanotubes during Anodic Charging. Journal of Physical Chemistry C, 2010, 114, 2505-2511.	3.1	10
151	Tuning of Sorted Double-Walled Carbon Nanotubes by Electrochemical Charging. ACS Nano, 2010, 4, 459-469.	14.6	34
152	The Influence of Strong Electron and Hole Doping on the Raman Intensity of Chemical Vapor-Deposition Graphene. ACS Nano, 2010, 4, 6055-6063.	14.6	243
153	Gas sensing properties of nanocrystalline diamond films. Diamond and Related Materials, 2010, 19, 196-200.	3.9	30
154	Selective detection of phosgene by nanocrystalline diamond layer. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2070-2073.	1.8	36
155	The reaction of lithium metal vapor with single walled carbon nanotubes of large diameters. Physica Status Solidi (B): Basic Research, 2009, 246, 2428-2431.	1.5	2
156	Controlled doping of double walled carbon nanotubes and conducting polymers in a composite: An in situ Raman spectroelectrochemical study. Composites Science and Technology, 2009, 69, 1553-1557.	7.8	16
157	Supramolecular Assembly of Single-Walled Carbon Nanotubes with a Ruthenium(II)â^Bipyridine Complex: An in Situ Raman Spectroelectrochemical Study. Journal of Physical Chemistry C, 2009, 113, 2611-2617.	3.1	8
158	An in situ Raman spectroelectrochemical study of the controlled doping of semiconducting single walled carbon nanotubes in a conducting polymer matrix. Synthetic Metals, 2009, 159, 2245-2248.	3.9	15
159	Selective Etching of Thin Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2009, 131, 4529-4534.	13.7	18
160	Fermi energy dependence of theG-band resonance Raman spectra of single-wall carbon nanotubes. Physical Review B, 2009, 80, .	3.2	45
161	Electrochemical Charging of Individual Single-Walled Carbon Nanotubes. ACS Nano, 2009, 3, 2320-2328.	14.6	51
162	Influence of the Resonant Electronic Transition on the Intensity of the Raman Radial Breathing Mode of Single Walled Carbon Nanotubes during Electrochemical Charging. Journal of Physical Chemistry C, 2009, 113, 16408-16413.	3.1	19

#	Article	IF	CITATIONS
163	Large Variety of Behaviors for the Raman G′ Mode of Single Walled Carbon Nanotubes upon Electrochemical Gating Arising from Different (<i>n</i> , <i>m</i>) of Individual Nanotubes. Journal of Physical Chemistry C, 2009, 113, 1751-1757.	3.1	14
164	In situ Raman spectroelectrochemistry of SWCNT bundles: Development of the tangential mode during electrochemical charging in different electrolyte solutions. Diamond and Related Materials, 2009, 18, 972-974.	3.9	9
165	Effect of Bundling on the Tangential Displacement Mode in the Raman Spectra of Semiconducting Single-Walled Carbon Nanotubes during Electrochemical Charging. Journal of Physical Chemistry C, 2009, 113, 1340-1345.	3.1	17
166	Novel Synthesis of the TiO2(B) Multilayer Templated Films. Chemistry of Materials, 2009, 21, 1457-1464.	6.7	69
167	Softening of the Radial Breathing Mode in Metallic Carbon Nanotubes. Physical Review Letters, 2009, 102, 126804.	7.8	48
168	In situ optical spectroelectrochemistry of single-walled carbon nanotube thin films. Journal of Solid State Electrochemistry, 2008, 12, 1279-1284.	2.5	10
169	The Isomers of Gadolinium Scandium Nitride Clusterfullerenes Gd _{<i>x</i>} Sc _{3â^²<i>x</i>} N@C ₈₀ (<i>x</i> =1, 2) and Their Influence on Cluster Structure. Chemistry - A European Journal, 2008, 14, 2084-2092.	3.3	60
170	Doping of C ₆₀ Fullerene Peapods with Lithium Vapor: Raman Spectroscopic and Spectroelectrochemical Studies. Chemistry - A European Journal, 2008, 14, 6231-6236.	3.3	6
171	The Extended View on the Empty <i>C</i> ₂ (3)â€C ₈₂ Fullerene: Isolation, Spectroscopic, Electrochemical, and Spectroelectrochemical Characterization and DFT Calculations. Chemistry - A European Journal, 2008, 14, 9960-9967.	3.3	23
172	Changes in the Electronic States of Single-Walled Carbon Nanotubes as Followed by a Raman Spectroelectrochemical Analysis of the Radial Breathing Mode. Journal of Physical Chemistry C, 2008, 112, 16759-16763.	3.1	25
173	Chemical States of Electrochemically Doped Single Wall Carbon Nanotubes As Probed by Raman Spectroelectrochemistry and ex Situ X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2008, 112, 13856-13861.	3.1	30
174	Probing high-pressure properties of single-wall carbon nanotubes through fullerene encapsulation. Physical Review B, 2008, 77, .	3.2	93
175	Development of the Tangential Mode in the Raman Spectra of SWCNT Bundles during Electrochemical Charging. Nano Letters, 2008, 8, 1257-1264.	9.1	60
176	Competition between the Spring Force Constant and the Phonon Energy Renormalization in Electrochemically Doped Semiconducting Single-Walled Carbon Nanotubes. Nano Letters, 2008, 8, 3532-3537.	9.1	43
177	Multilayer Films from Templated TiO ₂ and Structural Changes during their Thermal Treatment. Chemistry of Materials, 2008, 20, 2985-2993.	6.7	59
178	Comment on "Determination of the Exciton Binding Energy in Single-Walled Carbon Nanotubes― Physical Review Letters, 2007, 98, 019701; author reply 019702.	7.8	13
179	Heterostructures from Single-Wall Carbon Nanotubes and TiO[sub 2] Nanocrystals. Journal of the Electrochemical Society, 2007, 154, K19.	2.9	15
180	In Situ Raman Spectroelectrochemistry as a Tool for the Differentiation of Inner Tubes of Double-Wall Carbon Nanotubes and Thin Single-Wall Carbon Nanotubes. Analytical Chemistry, 2007, 79, 9074-9081.	6.5	17

#	Article	IF	CITATIONS
181	Influence of an Extended Fullerene Cage:  Study of Chemical and Electrochemical Doping of C70 Peapods by in Situ Raman Spectroelectrochemistry. Journal of Physical Chemistry C, 2007, 111, 1079-1085.	3.1	26
182	The Change of the State of an Endohedral Fullerene by Encapsulation into SWCNT: A Raman Spectroelectrochemical Study of Dy ₃ N@C ₈₀ Peapods. Chemistry - A European Journal, 2007, 13, 8811-8817.	3.3	23
183	An in situ Raman spectroelectrochemical study of the controlled doping of single walled carbon nanotubes in a conducting polymer matrix. Carbon, 2007, 45, 1463-1470.	10.3	35
184	Influence of single-walled carbon nanotube films on metabolic activity and adherence of human osteoblasts. Carbon, 2007, 45, 2266-2272.	10.3	43
185	HRTEM and EELS investigation of functionalized carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 37, 109-114.	2.7	9
186	Inâ€Situ Raman Spectroelectrochemical Study of13C-Labeled Fullerene Peapods and Carbon Nanotubes. Small, 2007, 3, 1746-1752.	10.0	13
187	Structural properties and electrochemical behavior of CNTâ€TiO ₂ nanocrystal heterostructures. Physica Status Solidi (B): Basic Research, 2007, 244, 4040-4045.	1.5	17
188	Raman spectroscopy and spectroelectrochemistry of the chemically nâ€doped DWCNT. Physica Status Solidi (B): Basic Research, 2007, 244, 4086-4091.	1.5	3
189	The effect of SWCNT and nano-diamond films on human osteoblast cells. Physica Status Solidi (B): Basic Research, 2007, 244, 4356-4359.	1.5	57
190	Filling factor and electronic structure ofDy3N@C80filled single-wall carbon nanotubes studied by photoemission spectroscopy. Physical Review B, 2006, 73, .	3.2	24
191	Raman spectroelectrochemistry of index-identified metallic carbon nanotubes: The resonance rule revisited. Physica Status Solidi (B): Basic Research, 2006, 243, 3130-3133.	1.5	16
192	The identification of dispersive and non-dispersive intermediate frequency modes of HiPco single walled carbon nanotubes by in situ Raman spectroelectrochemistry. Physica Status Solidi (B): Basic Research, 2006, 243, 3134-3137.	1.5	10
193	Novel catalysts for low temperature synthesis of single wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2006, 243, 3101-3105.	1.5	20
194	Charge distribution of potassium intercalated Dy3N@C80 observed with core-level and valence-band photoemission. Physica Status Solidi (B): Basic Research, 2006, 243, 3004-3007.	1.5	7
195	The study of the interaction of human mesenchymal stem cells and monocytes/macrophages with single-walled carbon nanotube films. Physica Status Solidi (B): Basic Research, 2006, 243, 3514-3518.	1.5	34
196	Electrochemical and chemical redox doping of fullerene (C60) peapods. Carbon, 2006, 44, 99-106.	10.3	21
197	In situ EPR spectroelectrochemistry of single-walled carbon nanotubes and C60 fullerene peapods. Carbon, 2006, 44, 2147-2154.	10.3	23
198	Interaction of nanodiamond with in situ generated sp-carbon chains probed by Raman spectroscopy. Carbon, 2006, 44, 3113-3116.	10.3	39

#	Article	IF	CITATIONS
199	The Intermediate Frequency Modes of Single- and Double-Walled Carbon Nanotubes: A Raman Spectroscopic and In Situ Raman Spectroelectrochemical Study. Chemistry - A European Journal, 2006, 12, 4451-4457.	3.3	25
200	A Facile Route to the Non-IPR Fullerene Sc3N@C68: Synthesis, Spectroscopic Characterization, and Density Functional Theory Computations (IPR=Isolated Pentagon Rule). Chemistry - A European Journal, 2006, 12, 7856-7863.	3.3	62
201	The Intermediate Frequency Modes of Single- and Double-Walled Carbon Nanotubes: A Raman Spectroscopic and In Situ Raman Spectroelectrochemical Study. Chemistry - A European Journal, 2006, 12, 5415-5415.	3.3	5
202	Gadolinium-Based Mixed-Metal Nitride Clusterfullerenes GdxSc3â~'xN@C80 (x=1, 2). ChemPhysChem, 2006, 7, 1990-1995.	2.1	74
203	Synthesis of single wall carbon nanotubes with invariant diameters using a modified laser assisted chemical vapour deposition route. Nanotechnology, 2006, 17, 5469-5473.	2.6	10
204	SPECTROELECTROCHEMICAL RECOGNITION OF CHEMICAL DOPANTS IN THE INNER SPACE OF CARBON NANOSTRUCTURES. Nano, 2006, 01, 219-227.	1.0	18
205	Incorporation of innovative compounds in nanostructured photoelectrochemical cells. Journal of Materials Processing Technology, 2005, 161, 107-112.	6.3	14
206	Transformation of fullerene peapods to double-walled carbon nanotubes induced by UV radiation. Carbon, 2005, 43, 1610-1616.	10.3	23
207	Isolated Nanoribbons of Carbon Nanotubes and Peapods. ChemPhysChem, 2005, 6, 426-430.	2.1	9
208	In-Situ Vis-Near-Infrared and Raman Spectroelectrochemistry of Double-Walled Carbon Nanotubes. Advanced Functional Materials, 2005, 15, 418-426.	14.9	45
209	Isolation of Carbon Nanostructures. AIP Conference Proceedings, 2005, , .	0.4	0
210	Electronic structure of the trimetal nitride fullereneDy3N@C80. Physical Review B, 2005, 72, .	3.2	31
211	Redox Doping of Doubleâ€Wall Carbon Nanotubes and C60Peapods. Fullerenes Nanotubes and Carbon Nanostructures, 2005, 13, 115-119.	2.1	9
212	Electrochemical Doping of Chirality-Resolved Carbon Nanotubes. Journal of Physical Chemistry B, 2005, 109, 19613-19619.	2.6	57
213	Electrochemical and gas-phase photocatalytic performance of nanostructured TiO2(B) prepared by novel synthetic route. Progress in Solid State Chemistry, 2005, 33, 253-261.	7.2	21
214	Novel Catalysts, Room Temperature, and the Importance of Oxygen for the Synthesis of Single-Walled Carbon Nanotubes. Nano Letters, 2005, 5, 1209-1215.	9.1	120
215	OPTICAL AND RAMAN SPECTROELECTROCHEMISTRY OF CARBON NANOSTRUCTURES. , 2005, , .		0
216	Distinct Redox Doping of Core/Shell Nanostructures: Double Wall Carbon Nanotubes. AIP Conference Proceedings, 2004, , .	0.4	0

#	Article	IF	CITATIONS
217	Electrochemical Doping of Double-Walled Carbon Nanotubes: An In Situ Raman Spectroelectrochemical Study. ChemPhysChem, 2004, 5, 274-277.	2.1	30
218	Electrochemical tuning of high energy phonon branches of double wall carbon nanotubes. Carbon, 2004, 42, 2915-2920.	10.3	41
219	Two Positions of Potassium in Chemically Doped C60Peapods:Â An in situ Spectroelectrochemical Study. Journal of Physical Chemistry B, 2004, 108, 6275-6280.	2.6	48
220	In Situ Spectroelectrochemistry of Poly(N,Nâ€~-ethylenebis(salicylideneiminato)Cu(II)). Analytical Chemistry, 2004, 76, 5918-5923.	6.5	16
221	Anatase Inverse Opal: Preparation and Electrochemical Properties. Materials Research Society Symposia Proceedings, 2004, 820, 19.	0.1	1
222	Lithium Storage in Nanostructured TiO2 Made by Hydrothermal Growth. Chemistry of Materials, 2004, 16, 477-485.	6.7	406
223	Phase-pure nanocrystalline Li 4 Ti 5 O 12 for a lithium-ion battery. Journal of Solid State Electrochemistry, 2003, 8, 2-6.	2.5	46
224	Sensitization of TiO[sub 2] by Polypyridine Dyes. Journal of the Electrochemical Society, 2003, 150, E155.	2.9	99
225	Fabrication of nano-interdigitated electrodes. , 2003, , .		0
226	Electrochromic 2,5â€Dihydroxyterephthalic Acid Linker in Metalâ^'Organic Frameworks. Advanced Photonics Research, 0, , 2100219.	3.6	1
227	Toward Grapheneâ€Enhanced Spectroelectrochemical Sensors. Advanced Materials Interfaces, 0, , 2200478.	3.7	1