Lei Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2190604/publications.pdf

Version: 2024-02-01

186265 265206 7,644 42 41 28 citations h-index g-index papers 45 45 45 7300 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nature Cell Biology, 2018, 20, 285-295.	10.3	1,650
2	FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N 6 -Methyladenosine RNA Demethylase. Cancer Cell, 2017, 31, 127-141.	16.8	1,139
3	R-2HG Exhibits Anti-tumor Activity by Targeting FTO/m6A/MYC/CEBPA Signaling. Cell, 2018, 172, 90-105.e23.	28.9	794
4	METTL14 Inhibits Hematopoietic Stem/Progenitor Differentiation and Promotes Leukemogenesis via mRNA m6A Modification. Cell Stem Cell, 2018, 22, 191-205.e9.	11.1	749
5	Small-Molecule Targeting of Oncogenic FTO Demethylase in Acute Myeloid Leukemia. Cancer Cell, 2019, 35, 677-691.e10.	16.8	516
6	Histone H3 trimethylation at lysine 36 guides m6A RNA modification co-transcriptionally. Nature, 2019, 567, 414-419.	27.8	452
7	Targeting FTO Suppresses Cancer Stem Cell Maintenance and Immune Evasion. Cancer Cell, 2020, 38, 79-96.e11.	16.8	389
8	RNA Demethylase ALKBH5 Selectively Promotes Tumorigenesis and Cancer Stem Cell Self-Renewal in Acute Myeloid Leukemia. Cell Stem Cell, 2020, 27, 64-80.e9.	11,1	225
9	DNA methylation downregulated mir-10b acts as a tumor suppressor in gastric cancer. Gastric Cancer, 2015, 18, 43-54.	5.3	201
10	R-2-hydroxyglutarate attenuates aerobic glycolysis in leukemia by targeting the FTO/m6A/PFKP/LDHB axis. Molecular Cell, 2021, 81, 922-939.e9.	9.7	157
11	YTHDF1 Promotes Gastric Carcinogenesis by Controlling Translation of <i>FZD7</i> Cancer Research, 2021, 81, 2651-2665.	0.9	150
12	METTL16 exerts an m6A-independent function to facilitate translation and tumorigenesis. Nature Cell Biology, 2022, 24, 205-216.	10.3	143
13	The m6A eraser FTO facilitates proliferation and migration of human cervical cancer cells. Cancer Cell International, 2019, 19, 321.	4.1	113
14	Targeted genomic sequencing identifies <i>PRRT2</i> mutations as a cause of paroxysmal kinesigenic choreoathetosis. Journal of Medical Genetics, 2012, 49, 76-78.	3.2	87
15	Characterization of microRNA-29 family expression and investigation of their mechanistic roles in gastric cancer. Carcinogenesis, 2014, 35, 497-506.	2.8	86
16	Chemotherapy-Induced miRNA-29c/Catenin-δSignaling Suppresses Metastasis in Gastric Cancer. Cancer Research, 2015, 75, 1332-1344.	0.9	58
17	MicroRNA-10a Is Down-Regulated by DNA Methylation and Functions as a Tumor Suppressor in Gastric Cancer Cells. PLoS ONE, 2014, 9, e88057.	2.5	55
18	Functional screen reveals essential roles of miRâ€27a/24 in differentiation of embryonic stemÂcells. EMBO Journal, 2015, 34, 361-378.	7.8	54

#	Article	IF	CITATIONS
19	ZFP36L1 promotes monocyte/macrophage differentiation by repressing CDK6. Scientific Reports, 2015, 5, 16229.	3.3	53
20	Targeted inhibition of STAT/TET1 axis as a therapeutic strategy for acute myeloid leukemia. Nature Communications, 2017, 8, 2099.	12.8	45
21	MicroRNA-219-2-3p Functions as a Tumor Suppressor in Gastric Cancer and Is Regulated by DNA Methylation. PLoS ONE, 2013, 8, e60369.	2.5	42
22	A Feedback Loop Consisting of MicroRNA 23a/27a and the \hat{I}^2 -Like Globin Suppressors KLF3 and SP1 Regulates Globin Gene Expression. Molecular and Cellular Biology, 2013, 33, 3994-4007.	2.3	41
23	A comprehensive analysis of GATA-1-regulated miRNAs reveals miR-23a to be a positive modulator of erythropoiesis. Nucleic Acids Research, 2013, 41, 4129-4143.	14.5	41
24	Homoharringtonine exhibits potent anti-tumor effect and modulates DNA epigenome in acute myeloid leukemia by targeting SP1/TET1/5hmC. Haematologica, 2020, 105, 148-160.	3.5	41
25	A regulatory circuit comprising GATA1/2 switch and microRNA-27a/24 promotes erythropoiesis. Nucleic Acids Research, 2014, 42, 442-457.	14.5	40
26	DNA Methylation mediated down-regulating of MicroRNA-33b and its role in gastric cancer. Scientific Reports, 2016, 6, 18824.	3.3	38
27	The RNA-binding protein QKI5 regulates primary miR-124-1 processing via a distal RNA motif during erythropoiesis. Cell Research, 2017, 27, 416-439.	12.0	38
28	Targeting the microRNA-21/AP1 axis by 5-fluorouracil and pirarubicin in human hepatocellular carcinoma. Oncotarget, 2015, 6, 2302-2314.	1.8	31
29	Frequency and spectrum of disease-causing variants in 1892 patients with suspected genetic HLH disorders. Blood Advances, 2020, 4, 2578-2594.	5 . 2	29
30	microRNA-23a, -27a and -24 synergistically regulate JAK1/Stat3 cascade and serve as novel therapeutic targets in human acute erythroid leukemia. Oncogene, 2016, 35, 6001-6014.	5.9	28
31	ALOX5 exhibits anti-tumor and drug-sensitizing effects in MLL-rearranged leukemia. Scientific Reports, 2017, 7, 1853.	3.3	26
32	The Up-Regulation of miR-199b-5p in Erythroid Differentiation Is Associated with GATA-1 and NF-E2. Molecules and Cells, 2014, 37, 213-219.	2.6	21
33	Consistency analysis of microRNAâ€arm expression reveals microRNAâ€369â€5p/3p as tumor suppressors in gastric cancer. Molecular Oncology, 2019, 13, 1605-1620.	4.6	18
34	TUMIR: an experimentally supported database of microRNA deregulation in various cancers. Journal of Clinical Bioinformatics, 2013, 3, 7.	1.2	11
35	miR-550-1 functions as a tumor suppressor in acute myeloid leukemia via the hippo signaling pathway. International Journal of Biological Sciences, 2020, 16, 2853-2867.	6.4	11
36	Lysine acetylation restricts mutant IDH2 activity to optimize transformation in AML cells. Molecular Cell, 2021, 81, 3833-3847.e11.	9.7	10

Lei Dong

#	Article	IF	CITATIONS
37	The N6-Adenine Methyltransferase METTL14 Plays an Oncogenic Role in Acute Myeloid Leukemia. Blood, 2016, 128, 1536-1536.	1.4	1
38	Targeted Inhibition of STAT/TET1 Axis As a Potent Therapeutic Strategy for Acute Myeloid Leukemia. Blood, 2017, 130, 857-857.	1.4	1
39	TET1 Regulates DNA Replication through Targeting of Minichromosome Maintenance Genes. Blood, 2016, 128, 2687-2687.	1.4	O
40	Alox5 Functions As Both Tumor Suppressor and Drug Sensitizer in AML. Blood, 2016, 128, 2851-2851.	1.4	0
41	ALKBH5 Functions As an Oncogene in Acute Myeloid Leukemia. Blood, 2018, 132, 3910-3910.	1.4	0