Junwang Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2189488/publications.pdf

Version: 2024-02-01

168	22,376	73	147
papers	citations	h-index	g-index
171	171	171	20914
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Visible-light driven heterojunction photocatalysts for water splitting $\hat{a} \in \hat{a}$ a critical review. Energy and Environmental Science, 2015, 8, 731-759.	30.8	1,985
2	Photoelectrochemical devices for solar water splitting $\hat{a} \in \text{``materials}$ and challenges. Chemical Society Reviews, 2017, 46, 4645-4660.	38.1	1,140
3	Highly Efficient Photocatalytic H ₂ Evolution from Water using Visible Light and Structureâ€Controlled Graphitic Carbon Nitride. Angewandte Chemie - International Edition, 2014, 53, 9240-9245.	13.8	1,000
4	Mechanism of Photocatalytic Water Splitting in TiO ₂ . Reaction of Water with Photoholes, Importance of Charge Carrier Dynamics, and Evidence for Four-Hole Chemistry. Journal of the American Chemical Society, 2008, 130, 13885-13891.	13.7	850
5	Mimicking Natural Photosynthesis: Solar to Renewable H ₂ Fuel Synthesis by Z-Scheme Water Splitting Systems. Chemical Reviews, 2018, 118, 5201-5241.	47.7	748
6	Efficient Photocatalytic Decomposition of Organic Contaminants over CaBi2O4 under Visible-Light Irradiation. Angewandte Chemie - International Edition, 2004, 43, 4463-4466.	13.8	721
7	Covalent organic framework photocatalysts: structures and applications. Chemical Society Reviews, 2020, 49, 4135-4165.	38.1	649
8	Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts. Nature Energy, 2019, 4, 746-760.	39.5	638
9	A critical review of CO2 photoconversion: Catalysts and reactors. Catalysis Today, 2014, 224, 3-12.	4.4	581
10	Photocatalytic Decomposition of Organic Contaminants by Bi ₂ WO ₆ Under Visible Light Irradiation. Catalysis Letters, 2004, 92, 53-56.	2.6	494
11	Visible Light-Driven Pure Water Splitting by a Nature-Inspired Organic Semiconductor-Based System. Journal of the American Chemical Society, 2014, 136, 12568-12571.	13.7	493
12	H ₂ and O ₂ Evolution from Water Half-Splitting Reactions by Graphitic Carbon Nitride Materials. Journal of Physical Chemistry C, 2013, 117, 7178-7185.	3.1	406
13	Efficient visible driven photocatalyst, silver phosphate: performance, understanding and perspective. Chemical Society Reviews, 2015, 44, 7808-7828.	38.1	406
14	Time-Resolved Spectroscopic Investigation of Charge Trapping in Carbon Nitrides Photocatalysts for Hydrogen Generation. Journal of the American Chemical Society, 2017, 139, 5216-5224.	13.7	397
15	Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species. Nature Catalysis, 2018, 1, 889-896.	34.4	391
16	Cu ₂ O/Reduced Graphene Oxide Composites for the Photocatalytic Conversion of CO ₂ . ChemSusChem, 2014, 7, 1086-1093.	6.8	387
17	Photophysical and Photocatalytic Properties of AglnW2O8. Journal of Physical Chemistry B, 2003, 107, 14265-14269.	2.6	310
18	Effects of Substituting Sr2+ and Ba2+ for Ca2+on the Structural Properties and Photocatalytic Behaviors of Caln2O4. Chemistry of Materials, 2004, 16, 1644-1649.	6.7	267

#	Article	IF	CITATIONS
19	Dynamics of photogenerated holes in nanocrystalline \hat{l} ±-Fe ₂ O ₃ electrodes for water oxidation probed by transient absorption spectroscopy. Chemical Communications, 2011, 47, 716-718.	4.1	261
20	Two-dimensional photocatalyst design: A critical review of recent experimental and computational advances. Materials Today, 2020, 34, 78-91.	14.2	253
21	Bismuth oxyhalides: synthesis, structure and photoelectrochemical activity. Chemical Science, 2016, 7, 4832-4841.	7.4	252
22	Facet engineered Ag3PO4 for efficient water photooxidation. Energy and Environmental Science, 2013, 6, 3380.	30.8	231
23	Water Splitting by Nanocrystalline TiO ₂ in a Complete Photoelectrochemical Cell Exhibits Efficiencies Limited by Charge Recombination. Journal of Physical Chemistry C, 2010, 114, 4208-4214.	3.1	228
24	1D Coâ€Pi Modified BiVO ₄ /ZnO Junction Cascade for Efficient Photoelectrochemical Water Cleavage. Advanced Energy Materials, 2014, 4, 1301590.	19.5	226
25	Linker-controlled polymeric photocatalyst for highly efficient hydrogen evolution from water. Energy and Environmental Science, 2017, 10, 1643-1651.	30.8	222
26	Strategies and Challenges on Selectivity of Photocatalytic Oxidation of Organic Substances. Advanced Energy Materials, 2021, 11, 2003216.	19.5	216
27	Efficient visible light-driven water oxidation and proton reduction by an ordered covalent triazine-based framework. Energy and Environmental Science, 2018, 11, 1617-1624.	30.8	212
28	Correlating long-lived photogenerated hole populations with photocurrent densities in hematite water oxidation photoanodes. Energy and Environmental Science, 2012, 5, 6304-6312.	30.8	196
29	Structural, photocatalytic, and photophysical properties of perovskite MSnO3 (M = Ca, Sr, and Ba) photocatalysts. Journal of Materials Research, 2007, 22, 1859-1871.	2.6	195
30	Synergistic effect of surface oxygen vacancies and interfacial charge transfer on Fe(III)/Bi2MoO6 for efficient photocatalysis. Applied Catalysis B: Environmental, 2019, 247, 150-162.	20.2	185
31	Photocatalytic degradation of methylene blue on CaIn2O4 under visible light irradiation. Chemical Physics Letters, 2003, 382, 175-179.	2.6	176
32	Photoluminescence and photocatalytic properties of SrSnO3 perovskite. Chemical Physics Letters, 2006, 418, 174-178.	2.6	174
33	Dimensionâ€Matched Zinc Phthalocyanine/BiVO ₄ Ultrathin Nanocomposites for CO ₂ Reduction as Efficient Wideâ€Visibleâ€Lightâ€Driven Photocatalysts via a Cascade Charge Transfer. Angewandte Chemie - International Edition, 2019, 58, 10873-10878.	13.8	168
34	Unique hole-accepting carbon-dots promoting selective carbon dioxide reduction nearly 100% to methanol by pure water. Nature Communications, 2020 , 11 , 2531 .	12.8	168
35	Efficient Photocatalysis on BaBiO ₃ Driven by Visible Light. Journal of Physical Chemistry C, 2007, 111, 12779-12785.	3.1	164
36	Enhanced photoelectrochemical water splitting by nanostructured BiVO4–TiO2 composite electrodes. Journal of Materials Chemistry A, 2014, 2, 3948.	10.3	164

#	Article	IF	CITATIONS
37	Laminated Hybrid Junction of Sulfurâ€Doped TiO ₂ and a Carbon Substrate Derived from Ti ₃ C ₂ MXenes: Toward Highly Visible Lightâ€Driven Photocatalytic Hydrogen Evolution. Advanced Science, 2018, 5, 1700870.	11.2	163
38	Photocatalytic Properties and Photoinduced Hydrophilicity of Surface-Fluorinated TiO2. Chemistry of Materials, 2007, 19, 116-122.	6.7	160
39	Recent advances in visible light-driven water oxidation and reduction in suspension systems. Materials Today, 2018, 21, 897-924.	14.2	157
40	Mesoporous SnO ₂ nanoparticle films as electron-transporting material in perovskite solar cells. RSC Advances, 2015, 5, 28424-28429.	3.6	154
41	Fe ₂ O ₃ –TiO ₂ Nanocomposites for Enhanced Charge Separation and Photocatalytic Activity. Chemistry - A European Journal, 2014, 20, 15571-15579.	3.3	146
42	Biomolecule-assisted fabrication of copper doped SnS ₂ nanosheet–reduced graphene oxide junctions with enhanced visible-light photocatalytic activity. Journal of Materials Chemistry A, 2014, 2, 1000-1005.	10.3	144
43	Dynamics of photogenerated charges in the phosphate modified TiO2 and the enhanced activity for photoelectrochemical water splitting. Energy and Environmental Science, 2012, 5, 6552.	30.8	143
44	Highly crystallized α-FeOOH for a stable and efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 2021-2028.	10.3	140
45	Photophysical and Photocatalytic Properties of a New Series of Visible-Light-Driven Photocatalysts M3V2O8 (M = Mg, Ni, Zn). Chemistry of Materials, 2005, 17, 5177-5182.	6.7	138
46	Transient Absorption Spectroscopy of Anatase and Rutile: The Impact of Morphology and Phase on Photocatalytic Activity. Journal of Physical Chemistry C, 2015, 119, 10439-10447.	3.1	135
47	Tunable Covalent Triazine-Based Frameworks (CTF-0) for Visible-Light-Driven Hydrogen and Oxygen Generation from Water Splitting. ACS Catalysis, 2019, 9, 7697-7707.	11.2	131
48	Correlation of crystal structures and electronic structures and photocatalytic properties of the W-containing oxides. Journal of Materials Chemistry, 2005, 15, 4246.	6.7	130
49	A Nanojunction Polymer Photoelectrode for Efficient Charge Transport and Separation. Angewandte Chemie - International Edition, 2017, 56, 8221-8225.	13.8	130
50	Bandgap Engineering of Organic Semiconductors for Highly Efficient Photocatalytic Water Splitting. Advanced Energy Materials, 2018, 8, 1801084.	19.5	127
51	Mechanism of O ₂ Production from Water Splitting: Nature of Charge Carriers in Nitrogen Doped Nanocrystalline TiO ₂ Films and Factors Limiting O ₂ Production. Journal of Physical Chemistry C, 2011, 115, 3143-3150.	3.1	123
52	Photocatalytic and photophysical properties of visible-light-driven photocatalyst ZnBi12O20. Chemical Physics Letters, 2005, 410, 104-107.	2.6	122
53	Controllable proton and CO2 photoreduction over Cu2O with various morphologies. International Journal of Hydrogen Energy, 2013, 38, 13017-13022.	7.1	121
54	Coupling Oxygen Ion Conduction to Photocatalysis in Mesoporous Nanorod-like Ceria Significantly Improves Photocatalytic Efficiency. Journal of Physical Chemistry C, 2011, 115, 14050-14057.	3.1	119

#	Article	IF	CITATIONS
55	Methane transformation by photocatalysis. Nature Reviews Materials, 2022, 7, 617-632.	48.7	114
56	2D-layered Ti3C2 MXenes for promoted synthesis of NH3 on P25 photocatalysts. Applied Catalysis B: Environmental, 2020, 273, 119054.	20.2	111
57	CuOx–TiO2 junction: what is the active component for photocatalytic H2 production?. Physical Chemistry Chemical Physics, 2013, 15, 14956.	2.8	110
58	Development of a Robust PET-RAFT Polymerization Using Graphitic Carbon Nitride (g-C ₃ N ₄). Macromolecules, 2017, 50, 7509-7516.	4.8	108
59	Oxygen-doped carbon nitride aerogel: A self-supported photocatalyst for solar-to-chemical energy conversion. Applied Catalysis B: Environmental, 2018, 236, 428-435.	20.2	108
60	Platinum―and CuO _{<i>x</i>} â€Decorated TiO ₂ Photocatalyst for Oxidative Coupling of Methane to C ₂ Hydrocarbons in a Flow Reactor. Angewandte Chemie - International Edition, 2020, 59, 19702-19707.	13.8	106
61	Insight on Shallow Trap States-Introduced Photocathodic Performance in n-Type Polymer Photocatalysts. Journal of the American Chemical Society, 2020, 142, 2795-2802.	13.7	98
62	Recent progress in artificial photosynthesis: CO2 photoreduction to valuable chemicals in a heterogeneous system. Current Opinion in Chemical Engineering, 2013, 2, 200-206.	7.8	95
63	New Insights into Defectâ€Mediated Heterostructures for Photoelectrochemical Water Splitting. Advanced Energy Materials, 2016, 6, 1502268.	19.5	95
64	A simple, low-cost CVD route to thin films of BiFeO3 for efficient water photo-oxidation. Journal of Materials Chemistry A, 2014, 2, 2922.	10.3	89
65	Photochemical CO ₂ reduction using structurally controlled g-C ₃ N ₄ . Physical Chemistry Chemical Physics, 2016, 18, 24825-24829.	2.8	89
66	Multi-electric field modulation for photocatalytic oxygen evolution: Enhanced charge separation by coupling oxygen vacancies with faceted heterostructures. Nano Energy, 2018, 51, 764-773.	16.0	88
67	Ultrathin sulfur-doped holey carbon nitride nanosheets with superior photocatalytic hydrogen production from water. Applied Catalysis B: Environmental, 2021, 284, 119742.	20.2	88
68	Charge Transfer and Photocatalytic Activity in CuO/TiO ₂ Nanoparticle Heterojunctions Synthesised through a Rapid, Oneâ€Pot, Microwave Solvothermal Route. ChemCatChem, 2015, 7, 1659-1667.	3.7	87
69	Photocatalytic reduction of CO ₂ and protons using water as an electron donor over potassium tantalate nanoflakes. Nanoscale, 2014, 6, 9767.	5.6	83
70	A Type II n-n staggered orthorhombic V2O5/monoclinic clinobisvanite BiVO4 heterojunction photoanode for photoelectrochemical water oxidation: Fabrication, characterisation and experimental validation. Chemical Engineering Journal, 2019, 364, 177-185.	12.7	81
71	Ru and RuO _x decorated carbon nitride for efficient ammonia photosynthesis. Nanoscale, 2020, 12, 12329-12335.	5.6	80
72	Highly Efficient Oxygen Reduction Catalysts by Rational Synthesis of Nanoconfined Maghemite in a Nitrogen-Doped Graphene Framework. ACS Catalysis, 2016, 6, 3558-3568.	11,2	74

#	Article	IF	CITATIONS
73	Enhanced photocatalytic activity of nc-TiO2 by promoting photogenerated electrons captured by the adsorbed oxygen. Physical Chemistry Chemical Physics, 2012, 14, 8530.	2.8	73
74	Efficient inorganic solid solar cells composed of perovskite and PbS quantum dots. Nanoscale, 2015, 7, 9902-9907.	5.6	73
75	Control Strategy on Two-/Four-Electron Pathway of Water Splitting by Multidoped Carbon Based Catalysts. ACS Catalysis, 2017, 7, 1637-1645.	11.2	66
76	Graphene with Atomic-Level In-Plane Decoration of <i>h</i> -BN Domains for Efficient Photocatalysis. Chemistry of Materials, 2017, 29, 2769-2776.	6.7	61
77	Facile self-assembly synthesis of \hat{I}^3 -Fe2O3 /graphene oxide for enhanced photo-Fenton reaction. Environmental Pollution, 2019, 248, 229-237.	7.5	59
78	Photocatalytic degradation of MB on MIn2O4 (M=alkali earth metal) under visible light: effects of crystal and electronic structure on the photocatalytic activity. Catalysis Today, 2004, 93-95, 885-889.	4.4	58
79	Acceleration effects of phosphate modification on the decay dynamics of photo-generated electrons of TiO2 and its photocatalytic activity. Chemical Communications, 2012, 48, 10775.	4.1	58
80	Earthâ€Abundant Oxygen Evolution Catalysts Coupled onto ZnO Nanowire Arrays for Efficient Photoelectrochemical Water Cleavage. Chemistry - A European Journal, 2014, 20, 12954-12961.	3.3	57
81	Size-controlled TiO2 nanoparticles on porous hosts for enhanced photocatalytic hydrogen production. Applied Catalysis A: General, 2016, 521, 133-139.	4.3	57
82	Enhancement Effects of Cobalt Phosphate Modification on Activity for Photoelectrochemical Water Oxidation of TiO ₂ and Mechanism Insights. ACS Applied Materials & Diterfaces, 2013, 5, 4046-4052.	8.0	56
83	Interfacial charge separation in Cu ₂ O/RuO _x as a visible light driven CO ₂ reduction catalyst. Physical Chemistry Chemical Physics, 2014, 16, 5922-5926.	2.8	55
84	Visible-light driven water splitting over BiFeO ₃ photoanodes grown via the LPCVD reaction of [Bi(O ^t Bu) ₃] and [Fe(O ^t Bu) ₃] ₂ and enhanced with a surface nickel oxygen evolution catalyst. Nanoscale, 2015, 7, 16343-16353.	5.6	55
85	Controllable Synthesis of Gold Nanoparticles in Aqueous Solution by Microwave Assisted Flow Chemistry. ACS Sustainable Chemistry and Engineering, 2016, 4, 6435-6442.	6.7	53
86	Rational Design of Atomic Layers of Pt Anchored on Mo ₂ C Nanorods for Efficient Hydrogen Evolution over a Wide pH Range. Small, 2019, 15, e1900014.	10.0	52
87	Recent progress in photocatalytic degradation of chlorinated phenols and reduction of heavy metal ions in water by TiO ₂ -based catalysts. International Materials Reviews, 2022, 67, 47-64.	19.3	51
88	A Method for Synthesis of Renewable Cu ₂ O Junction Composite Electrodes and Their Photoelectrochemical Properties. ACS Sustainable Chemistry and Engineering, 2015, 3, 710-717.	6.7	50
89	Effect of addition of Zn on the catalytic activity of a Co/HZSM-5 catalyst for the SCR of NOx with CH4. Applied Catalysis B: Environmental, 2002, 35, 317-321.	20.2	47
90	NO reduction by CH4 in the presence of excess O2 over Co/sulfated zirconia catalysts. Applied Catalysis B: Environmental, 2003, 43, 195-201.	20.2	47

#	Article	IF	Citations
91	Well-Crystallized α-FeOOH Cocatalysts Modified BiVO ₄ Photoanodes for Efficient and Stable Photoelectrochemical Water Splitting. ACS Applied Energy Materials, 2020, 3, 5927-5936.	5.1	47
92	Conversion of Solar Energy to Fuels by Inorganic Heterogeneous Systems. Chinese Journal of Catalysis, 2011, 32, 879-890.	14.0	46
93	Comparing photoelectrochemical water oxidation, recombination kinetics and charge trapping in the three polymorphs of TiO2. Scientific Reports, 2017, 7, 2938.	3.3	46
94	Photocatalytic mineralisation of herbicide 2,4,5-trichlorophenoxyacetic acid: enhanced performance by triple junction Cu–TiO ₂ –Cu ₂ O and the underlying reaction mechanism. New Journal of Chemistry, 2015, 39, 314-320.	2.8	44
95	Dimensionâ€Matched Zinc Phthalocyanine/BiVO ₄ Ultrathin Nanocomposites for CO ₂ Reduction as Efficient Wideâ€Visibleâ€Lightâ€Driven Photocatalysts via a Cascade Charge Transfer. Angewandte Chemie, 2019, 131, 10989-10994.	2.0	44
96	Key factors affecting photoelectrochemical performance of g-C ₃ N ₄ polymer films. Chemical Communications, 2019, 55, 7191-7194.	4.1	44
97	Direct decomposition of NO by microwave heating over Fe/NaZSM-5. Applied Catalysis B: Environmental, 2002, 36, 1-7.	20.2	43
98	Efficient Degradation of Phenol and 4â€Nitrophenol by Surface Oxygen Vacancies and Plasmonic Silver Coâ€Modified Bi ₂ MoO ₆ Photocatalysts. Chemistry - A European Journal, 2018, 24, 18463-18478.	3.3	40
99	Co3+-O-V4+ cluster in CoVOx nanorods for efficient and stable electrochemical oxygen evolution. Applied Catalysis B: Environmental, 2021, 282, 119571.	20.2	39
100	Microwave discharge-assisted NO reduction by CH4 over Co/HZSM-5 and Ni/HZSM-5 under O2 excess. Catalysis Letters, 2001, 73, 193-197.	2.6	37
101	Photocatalytic Nitrogen Reduction by Ti ₃ C ₂ MXene Derived Oxygen Vacancyâ€Rich C/TiO ₂ . Advanced Sustainable Systems, 2021, 5, 2000282.	5.3	37
102	Microwave discharge-assisted catalytic conversion of NO to N2. Chemical Communications, 2000, , 1861-1862.	4.1	35
103	Improved visible-light activities of nanocrystalline CdS by coupling with ultrafine NbN with lattice matching for hydrogen evolution. Sustainable Energy and Fuels, 2018, 2, 549-552.	4.9	35
104	Experimental and computational investigation of heat transfer in a microwave-assisted flow system. Chemical Engineering and Processing: Process Intensification, 2019, 142, 107537.	3.6	35
105	Controllable assembly of single/double-thin-shell g-C ₃ N ₄ vesicles <i>via</i> shape-selective solid-state templating method for efficient photocatalysis. Journal of Materials Chemistry A, 2019, 7, 17815-17822.	10.3	33
106	Progress and challenges in photocatalytic ammonia synthesis. Materials Advances, 2021, 2, 564-581.	5.4	32
107	Preparation and photophysical properties of some oxides in Ca–Bi–O system. Journal of Alloys and Compounds, 2008, 455, 346-352.	5.5	31
108	Synergistic effects of dual-electrocatalyst FeOOH/NiOOH thin films as effective surface photogenerated hole extractors on a novel hierarchical heterojunction photoanode structure for solar-driven photoelectrochemical water splitting. Chemical Engineering Journal, 2020, 380, 122501.	12.7	30

#	Article	IF	Citations
109	Highly dispersed FeOOH to enhance photocatalytic activity of TiO2 for complete mineralisation of herbicides. Applied Surface Science, 2020, 511, 145479.	6.1	29
110	Interface-modulated nanojunction and microfluidic platform for photoelectrocatalytic chemicals upgrading. Applied Catalysis B: Environmental, 2021, 282, 119541.	20.2	29
111	Promotional effect of colloidal alumina on the activity of the In/HZSM-5 catalyst for the selective reduction of NO with methane. Applied Catalysis B: Environmental, 2003, 41, 129-136.	20.2	27
112	Sandwich SrTiO 3 /TiO 2 /H-Titanate nanofiber composite photocatalysts for efficient photocatalytic hydrogen evolution. Applied Surface Science, 2014, 315, 314-322.	6.1	27
113	Control of chemical state of cerium in doped anatase TiO ₂ by solvothermal synthesis and its application in photocatalytic water reduction. Journal of Materials Chemistry A, 2015, 3, 9890-9898.	10.3	27
114	Efficient design principle for interfacial charge separation in hydrogen-intercalated nonstoichiometric oxides. Nano Energy, 2018, 53, 887-897.	16.0	27
115	Design of Multifunctional Nanostructure for Ultrafast Extraction and Purification of Aflatoxins in Foodstuffs. Analytical Chemistry, 2017, 89, 10556-10564.	6.5	26
116	Improving solar water-splitting performance of LaTaON2 by bulk defect control and interface engineering. Applied Catalysis B: Environmental, 2018, 226, 111-116.	20.2	26
117	Photocatalytic Hydrogen Production Based on a Serial Metalâ€Salen Complexes and the Reaction Mechanism. ChemCatChem, 2019, 11, 6324-6331.	3.7	25
118	Dimensionally and compositionally controlled growth of calcium phosphate nanowires for bone tissue regeneration. Journal of Materials Chemistry B, 2013, 1, 6170.	5.8	24
119	Tailoring degree of esterification and branching of poly(glycerol sebacate) by energy efficient microwave irradiation. Polymer Chemistry, 2017, 8, 3937-3947.	3.9	23
120	Microwave Intensified Synthesis: Batch and Flow Chemistry. Chemical Record, 2019, 19, 172-187.	5.8	23
121	Crystallinity-Modulated Co _{2–<i>x</i>} V _{<i>x</i>} O ₄ Nanoplates for Efficient Electrochemical Water Oxidation. ACS Catalysis, 2021, 11, 14884-14891.	11.2	23
122	Self-assembled sulphur doped carbon nitride for photocatalytic water reforming of methanol. Chemical Engineering Journal, 2022, 445, 136790.	12.7	23
123	Phase-Tunable Calcium Phosphate Biomaterials Synthesis and Application in Protein Delivery. ACS Biomaterials Science and Engineering, 2015, 1, 947-954.	5.2	22
124	In situ cofactor regeneration enables selective CO2 reduction in a stable and efficient enzymatic photoelectrochemical cell. Applied Catalysis B: Environmental, 2021, 296, 120349.	20.2	21
125	Microwave-Assisted Purification of Automotive Emissions. Journal of Catalysis, 2002, 211, 560-564.	6.2	20
126	Kinetics of MB degradation and effect of pH on the photocatalytic activity of MIn2O4 (M = Ca, Sr, Ba) under visible light irradiation. Research on Chemical Intermediates, 2005, 31, 513-519.	2.7	20

#	Article	IF	CITATIONS
127	Photocatalytic Oxygen Evolution from Cobalt-Modified Nanocrystalline BiFeO3 Films Grown via Low-Pressure Chemical Vapor Deposition from β-Diketonate Precursors. Crystal Growth and Design, 2016, 16, 3818-3825.	3.0	20
128	Surface engineering-modulated porous N-doped rod-like molybdenum phosphide catalysts: towards high activity and stability for hydrogen evolution reaction over a wide pH range. RSC Advances, 2018, 8, 26871-26879.	3.6	20
129	Origin of High-Efficiency Photoelectrochemical Water Splitting on Hematite/Functional Nanohybrid Metal Oxide Overlayer Photoanode after a Low Temperature Inert Gas Annealing Treatment. ACS Omega, 2019, 4, 1449-1459.	3.5	20
130	Mesoporous calcium phosphate bionanomaterials with controlled morphology by an energyâ€efficient microwave method. Journal of Biomedical Materials Research - Part A, 2015, 103, 3781-3789.	4.0	19
131	Isoelectric point-controlled preferential photodeposition of platinum on Cu2O-TiO2 composite surfaces. Chinese Chemical Letters, 2019, 30, 985-988.	9.0	19
132	Platinum―and CuO _{<i>x</i>} â€Decorated TiO ₂ Photocatalyst for Oxidative Coupling of Methane to C ₂ Hydrocarbons in a Flow Reactor. Angewandte Chemie, 2020, 132, 19870-19875.	2.0	19
133	Embedded carbon in a carbon nitride hollow sphere for enhanced charge separation and photocatalytic water splitting. Nanoscale, 2020, 12, 7339-7346.	5.6	19
134	Tailoring collaborative N–O functionalities of graphene oxide for enhanced selective oxidation of benzyl alcohol. Carbon, 2021, 182, 715-724.	10.3	19
135	Magneto-optical transmission in magnetic nanoparticle suspensions for different optical applications: a review. Journal Physics D: Applied Physics, 2021, 54, 013001.	2.8	19
136	Morphology Controlled Porous Calcium Phosphate Nanoplates and Nanorods with Enhanced Protein Loading and Release Functionality. Advanced Healthcare Materials, 2013, 2, 682-686.	7.6	18
137	Microwave-Assisted Purification of Automotive Emissions. Journal of Catalysis, 2002, 211, 560-564.	6.2	17
138	BiVO4 semiconductor sensitized solar cells. Science China Chemistry, 2015, 58, 1489-1493.	8.2	17
139	Bridging-nitrogen defects modified graphitic carbon nitride nanosheet for boosted photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2021, 46, 27014-27025.	7.1	16
140	Spontaneous Bulk-Surface Charge Separation of TiO ₂ -{001} Nanocrystals Leads to High Activity in Photocatalytic Methane Combustion. ACS Catalysis, 2022, 12, 6457-6463.	11.2	16
141	Title is missing!. Reaction Kinetics and Catalysis Letters, 2001, 73, 311-316.	0.6	14
142	Interaction between Noble Metal Nanoparticles and Light for Contaminant Decomposition. ChemSusChem, 2010, 3, 800-801.	6.8	14
143	Stabilization of GaAs photoanodes by $\langle i \rangle$ in situ $\langle i \rangle$ deposition of nickel-borate surface catalysts as hole trapping sites. Sustainable Energy and Fuels, 2019, 3, 814-822.	4.9	14
144	Synthesis of Silicateâ€Bridged Heterojunctional SnO ₂ /BiVO ₄ Nanoplates as Efficient Photocatalysts to Convert CO ₂ and Degrade 2,4â€Dichlorophenol. Particle and Particle Systems Characterization, 2018, 35, 1700320.	2.3	13

#	Article	IF	CITATIONS
145	Stable Complete Water Splitting by Covalent Triazineâ€based Framework CTFâ€0. ChemCatChem, 2020, 12, 2708-2712.	3.7	13
146	Digital gene-expression profiling analysis of the fatty liver of Landes geese fed different supplemental oils. Gene, 2018, 673, 32-45.	2.2	11
147	Tuning of reduced graphene oxide thin film as an efficient electron conductive interlayer in a proven heterojunction photoanode for solar-driven photoelectrochemical water splitting. Journal of Alloys and Compounds, 2020, 817, 152721.	5.5	11
148	Removal of NO by Microwave Discharge with the Addition of CH4. Chemistry Letters, 2001, 30, 140-141.	1.3	10
149	Direct Decomposition of NO Activated by Microwave Discharge. Industrial & Direct Research, 2003, 42, 5993-5999.	3.7	10
150	Enhancing Hydrogenâ€Generation Performance of γâ€∢scp> <scp>Al</scp> (scp> _{Modified <scp><scp>Al</scp> (scp> Powder by Ultrasonic Dispersion. Journal of the American Ceramic Society, 2012, 95, 1193-1196.</scp>}	3.8	10
151	From UV to NIR: A Fullâ€Spectrum Metalâ€Free Photocatalyst for Efficient Polymer Synthesis in Aqueous Conditions. Angewandte Chemie, 2020, 132, 21576-21580.	2.0	10
152	Efficient Photocatalytic CO ₂ Reformation of Methane on Ru/Laâ€gâ€C ₃ N ₄ by Promoting Charge Transfer and CO ₂ Activation**. ChemPhotoChem, 2021, 5, 748-757.	3.0	9
153	In2S3 sensitized solar cells with a new passivation layer. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 281, 53-58.	3.9	8
154	Reduction of NO by CH4 with Microwave Heating. Topics in Catalysis, 2003, 22, 59-63.	2.8	5
155	Modification of Photophysical Properties of WO ₃ by Doping Different Metals. Materials Science Forum, 2003, 423-425, 163-166.	0.3	5
156	Decomposition of acetaldehyde on a Bi-based semiconductor. Research on Chemical Intermediates, 2005, 31, 499-503.	2.7	5
157	Attenuated Periodical Oscillation Characteristics in a Nanoscale Particle-Laden Laminar Flow. Industrial & Department of the Research, 2020, 59, 8018-8027.	3.7	5
158	Facile one-step synthesis and enhanced photocatalytic activity of a WC/ferroelectric nanocomposite. Journal of Materials Chemistry A, 2021, 9, 22861-22870.	10.3	5
159	Structural characterization and photocatalytic behavior of \hat{l}^2 -KlnW2O8. Research on Chemical Intermediates, 2005, 31, 505-512.	2.7	4
160	Periodical oscillation of particle-laden laminar flow within a tubular photocatalytic hydrogen production reactor predicted by discrete element method. International Journal of Hydrogen Energy, 2021, 46, 9653-9665.	7.1	4
161	Reviewâ€"Origin and Promotional Effects of Plasmonics in Photocatalysis. Journal of the Electrochemical Society, 2022, 169, 036512.	2.9	4
162	Conversion of NO to N2in Continuous Microwave Discharge. Chemistry Letters, 2000, 29, 916-917.	1.3	3

#	Article	IF	CITATIONS
163	Molecular Cobalt Catalysts Grafted onto Polymers for Efficient Hydrogen Generation Cathodes. Solar Rrl, 2021, 5, 2000281.	5.8	3
164	Semiconductor Sensitized Solar Cells Based on BiVO4-Sensitized Mesoporous SnO2 Photoanodes. Journal of Nanoscience and Nanotechnology, 2016, 16, 5719-5723.	0.9	1
165	Recent Developments in Solar Energy Harvesting and Photocatalysis. International Journal of Photoenergy, 2012, 2012, 1-2.	2.5	O
166	Photocatalytic Water Splitting. , 2012, , 911-933.		0
167	Innentitelbild: Dimensionâ€Matched Zinc Phthalocyanine/BiVO ₄ Ultrathin Nanocomposites for CO ₂ Reduction as Efficient Wideâ€Visibleâ€Lightâ€Driven Photocatalysts via a Cascade Charge Transfer (Angew. Chem. 32/2019). Angewandte Chemie, 2019, 131, 10878-10878.	2.0	O
168	Tuning Selectivity Among Acetalisation, Pinacol Coupling and Hydrogenation Reactions of Benzaldehyde by Catalytic and Photochemical Pathways at Room Temperature. Materials Today Energy, 2021, , 100890.	4.7	0