## Wei Yan

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2188632/publications.pdf

Version: 2024-02-01

|                | 109321                             | 91884                             |
|----------------|------------------------------------|-----------------------------------|
| 5,207          | 35                                 | 69                                |
| citations      | h-index                            | g-index                           |
|                |                                    |                                   |
|                |                                    |                                   |
| 0.7            | 07                                 | 6405                              |
| 8/             | 8/                                 | 6405                              |
| docs citations | times ranked                       | citing authors                    |
|                |                                    |                                   |
|                | 5,207 citations  87 docs citations | 5,207 35 citations h-index  87 87 |

| #  | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Beyond Genes: Germline Disruption in the Etiology of Autism Spectrum Disorders. Journal of Autism and Developmental Disorders, 2022, 52, 4608-4624.                                                     | 2.7  | 6         |
| 2  | Perinatal Exposure to Nicotine Alters Sperm RNA Profiles in Rats. Frontiers in Endocrinology, 2022, 13, .                                                                                               | 3.5  | 1         |
| 3  | Uncoupling transcription and translation through miRNA-dependent poly(A) length control in haploid male germ cells. Development (Cambridge), 2022, 149, .                                               | 2.5  | 5         |
| 4  | Ablation of the miR-465 Cluster Causes a Skewed Sex Ratio in Mice. Frontiers in Endocrinology, 2022, 13, .                                                                                              | 3.5  | 4         |
| 5  | Triptonide is a reversible non-hormonal male contraceptive agent in mice and non-human primates. Nature Communications, 2021, 12, 1253.                                                                 | 12.8 | 44        |
| 6  | AASRA: an anchor alignment-based small RNA annotation pipelineâ€. Biology of Reproduction, 2021, 105, 267-277.                                                                                          | 2.7  | 24        |
| 7  | Dnmt2-null sperm block maternal transmission of a paramutant phenotypeâ€. Biology of Reproduction, 2021, 105, 603-612.                                                                                  | 2.7  | 5         |
| 8  | An interview with Dr. Barry Zirkin. Biology of Reproduction, 2021, 105, 1-4.                                                                                                                            | 2.7  | 0         |
| 9  | Oviductal motile cilia are essential for oocyte pickup but dispensable for sperm and embryo transport. Proceedings of the National Academy of Sciences of the United States of America, 2021, $118$ , . | 7.1  | 46        |
| 10 | Intrinsic pacemaker activity and propulsive forces provided by the MYOSALPINX are necessary for egg and embryo transport in the oviduct. Biology of Reproduction, 2021, , .                             | 2.7  | 2         |
| 11 | Xâ€linked <i>miRâ€506</i> family miRNAs promote FMRP expression in mouse spermatogonia. EMBO Reports, 2020, 21, e49024.                                                                                 | 4.5  | 12        |
| 12 | An interview with Dr Michael Griswold. Biology of Reproduction, 2020, 103, 681-683.                                                                                                                     | 2.7  | 0         |
| 13 | Both Cauda and Caput Epididymal Sperm Are Capable of Supporting Full-Term Development in FVB and CD-1 Mice. Developmental Cell, 2020, 55, 675-676.                                                      | 7.0  | 16        |
| 14 | Assessment of operant learning and memory in mice born through ICSI. Human Reproduction, 2020, 35, 2058-2071.                                                                                           | 0.9  | 5         |
| 15 | Efficient genome editing by CRISPR-Mb3Cas12a in mice. Journal of Cell Science, 2020, 133, .                                                                                                             | 2.0  | 11        |
| 16 | Elimination of <i>Calm1</i> long 3′-UTR mRNA isoform by CRISPR–Cas9 gene editing impairs dorsal root ganglion development and hippocampal neuron activation in mice. Rna, 2020, 26, 1414-1430.          | 3.5  | 27        |
| 17 | m6A-dependent biogenesis of circular RNAs in male germ cells. Cell Research, 2020, 30, 211-228.                                                                                                         | 12.0 | 131       |
| 18 | Celebrating the Silver Anniversary of the North American Testis Workshop. Andrology, 2020, 8, 820-824.                                                                                                  | 3.5  | 0         |

| #  | Article                                                                                                                                                                                                                                                                      | IF   | Citations |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | New horizons in reproductive biology: a special issue. Biology of Reproduction, 2019, 101, 513-513.                                                                                                                                                                          | 2.7  | O         |
| 20 | Epigenetic transgenerational inheritance of testis pathology and Sertoli cell epimutations: generational origins of male infertility. Environmental Epigenetics, 2019, 5, dvz013.                                                                                            | 1.8  | 33        |
| 21 | <scp>MYCT</scp> 1 represses apoptosis of laryngeal cancerous cells through the <scp>MAX</scp> /miRâ€181a/ <scp>NPM</scp> 1 pathway. FEBS Journal, 2019, 286, 3892-3908.                                                                                                      | 4.7  | 21        |
| 22 | Inflammation induced by faulty replication during embryonic development causes skewed sex ratio. Biology of Reproduction, 2019, 101, 259-261.                                                                                                                                | 2.7  | 2         |
| 23 | Insertion of a chimeric retrotransposon sequence in mouse Axin1 locus causes metastable kinky tail phenotype. Mobile DNA, 2019, 10, 17.                                                                                                                                      | 3.6  | 11        |
| 24 | Environmental Toxicant Induced Epigenetic Transgenerational Inheritance of Prostate Pathology and Stromal-Epithelial Cell Epigenome and Transcriptome Alterations: Ancestral Origins of Prostate Disease. Scientific Reports, 2019, 9, 2209.                                 | 3.3  | 31        |
| 25 | Motile cilia of the male reproductive system require miR-34/miR-449 for development and function to generate luminal turbulence. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3584-3593.                                      | 7.1  | 79        |
| 26 | Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs. Nature Cell Biology, 2018, 20, 535-540.                                                                                                        | 10.3 | 302       |
| 27 | ALKBH5-dependent m6A demethylation controls splicing and stability of long 3′-UTR mRNAs in male germ cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E325-E333.                                                           | 7.1  | 399       |
| 28 | Environmental toxicant induced epigenetic transgenerational inheritance of ovarian pathology and granulosa cell epigenome and transcriptome alterations: ancestral origins of polycystic ovarian syndrome and primary ovarian insufficiency. Epigenetics, 2018, 13, 875-895. | 2.7  | 51        |
| 29 | Next-generation sequencing reveals differentially expressed small noncoding RNAs in uterine leiomyoma. Fertility and Sterility, 2018, 109, 919-929.                                                                                                                          | 1.0  | 19        |
| 30 | Regulation of Spermatogenesis by Noncoding RNAs. , 2018, , 90-92.                                                                                                                                                                                                            |      | 0         |
| 31 | Alterations in sperm DNA methylation, non-coding RNA and histone retention associate with DDT-induced epigenetic transgenerational inheritance of disease. Epigenetics and Chromatin, 2018, 11, 8.                                                                           | 3.9  | 148       |
| 32 | Alterations in sperm DNA methylation, non-coding RNA expression, and histone retention mediate vinclozolin-induced epigenetic transgenerational inheritance of disease. Environmental Epigenetics, 2018, 4, dvy010.                                                          | 1.8  | 127       |
| 33 | <i>Prps1l1</i> , a testisâ€specific gene, is dispensable for mouse spermatogenesis. Molecular Reproduction and Development, 2018, 85, 802-804.                                                                                                                               | 2.0  | 5         |
| 34 | MicroRNAs control mRNA fate by compartmentalization based on 3′ UTR length in male germ cells. Genome Biology, 2017, 18, 105.                                                                                                                                                | 8.8  | 43        |
| 35 | Male infertility caused by dominant point mutations in the D-box domain reveals a novel role of murine and human PIWI proteins. Biology of Reproduction, 2017, 96, 1121-1123.                                                                                                | 2.7  | 7         |
| 36 | Chemical and physical guidance of fish spermatozoa into the egg through the micropyleâ€,‡. Biology of Reproduction, 2017, 96, 780-799.                                                                                                                                       | 2.7  | 67        |

| #  | Article                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Mark it for destruction: a novel role of mRNA methylation in maternal-to-zygotic transitionâ€. Biology of Reproduction, 2017, 96, 829-830.                                                                                                              | 2.7  | 0         |
| 38 | Loss of LMOD1 impairs smooth muscle cytocontractility and causes megacystis microcolon intestinal hypoperistalsis syndrome in humans and mice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2739-E2747. | 7.1  | 97        |
| 39 | Microfluidics-based digital quantitative PCR for single-cell small RNA quantificationâ€. Biology of Reproduction, 2017, 97, 490-496.                                                                                                                    | 2.7  | 8         |
| 40 | Duplicate: A New Chapter for Biology of Reproduction. Biology of Reproduction, 2017, , .                                                                                                                                                                | 2.7  | 1         |
| 41 | An interview with Magdalena Zernicka-Goetz. Biology of Reproduction, 2017, 96, 503-504.                                                                                                                                                                 | 2.7  | 1         |
| 42 | Paternal pachytene piRNAs are not required for fertilization, embryonic development and sperm-mediated epigenetic inheritance in mice. Environmental Epigenetics, 2016, 2, dvw021.                                                                      | 1.8  | 5         |
| 43 | Micro <scp>RNA</scp> â€34/449 controls mitotic spindle orientation during mammalian cortex development. EMBO Journal, 2016, 35, 2386-2398.                                                                                                              | 7.8  | 53        |
| 44 | Epigenetic inheritance of acquired traits through sperm RNAs and sperm RNA modifications. Nature Reviews Genetics, 2016, 17, 733-743.                                                                                                                   | 16.3 | 427       |
| 45 | SpermBase: A Database for Sperm-Borne RNA Contents. Biology of Reproduction, 2016, 95, 99-99.                                                                                                                                                           | 2.7  | 111       |
| 46 | Ancestral vinclozolin exposure alters the epigenetic transgenerational inheritance of sperm small noncoding RNAs. Environmental Epigenetics, 2016, 2, dvw001.                                                                                           | 1.8  | 90        |
| 47 | UPF2-Dependent Nonsense-Mediated mRNA Decay Pathway Is Essential for Spermatogenesis by Selectively Eliminating Longer 3'UTR Transcripts. PLoS Genetics, 2016, 12, e1005863.                                                                            | 3.5  | 94        |
| 48 | A testisâ€specific gene, <i>Ubqlnl</i> , is dispensable for mouse embryonic development and spermatogenesis. Molecular Reproduction and Development, 2015, 82, 408-409.                                                                                 | 2.0  | 15        |
| 49 | Sperm-borne miRNAs and endo-siRNAs are important for fertilization and preimplantation embryonic development. Development (Cambridge), 2015, 143, 635-47.                                                                                               | 2.5  | 211       |
| 50 | <i>Spata6</i> is required for normal assembly of the sperm connecting piece and tight head–tail conjunction. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E430-9.                                        | 7.1  | 129       |
| 51 | UPF2, a nonsense-mediated mRNA decay factor, is required for prepubertal Sertoli cell development and male fertility by ensuring fidelity of the transcriptome. Development (Cambridge), 2015, 142, 352-62.                                             | 2.5  | 30        |
| 52 | mir- $34b/c$ and mir- $449a/b/c$ are required for spermatogenesis, but not for the first cleavage division in mice. Biology Open, 2015, 4, 212-223.                                                                                                     | 1.2  | 157       |
| 53 | Breeding scheme and maternal small RNAs affect the efficiency of transgenerational inheritance of a paramutation in mice. Scientific Reports, 2015, 5, 9266.                                                                                            | 3.3  | 44        |
| 54 | Escape of X-linked miRNA genes from meiotic sex chromosome inactivation. Development (Cambridge), 2015, 142, 3791-800.                                                                                                                                  | 2.5  | 19        |

| #  | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | shRNA Off-Target Effects In Vivo: Impaired Endogenous siRNA Expression and Spermatogenic Defects. PLoS ONE, 2015, 10, e0118549.                                                                                                                      | 2.5  | 11        |
| 56 | Pervasive Genotypic Mosaicism in Founder Mice Derived from Genome Editing through Pronuclear Injection. PLoS ONE, 2015, 10, e0129457.                                                                                                                | 2.5  | 55        |
| 57 | A Novel Class of Somatic Small RNAs Similar to Germ Cell Pachytene PIWI-interacting Small RNAs*. Journal of Biological Chemistry, 2014, 289, 32824-32834.                                                                                            | 3.4  | 25        |
| 58 | Murine Follicular Development Requires Oocyte DICER, but Not DROSHA1. Biology of Reproduction, 2014, 91, 39.                                                                                                                                         | 2.7  | 32        |
| 59 | Two miRNA clusters, <i>miR-34b/c</i> and <i>miR-449</i> , are essential for normal brain development, motile ciliogenesis, and spermatogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2851-7. | 7.1  | 244       |
| 60 | Potential roles of noncoding RNAs in environmental epigenetic transgenerational inheritance. Molecular and Cellular Endocrinology, 2014, 398, 24-30.                                                                                                 | 3.2  | 76        |
| 61 | Incomplete creâ€mediated excision leads to phenotypic differences between <i>Stra8â€iCre;<br/>Mov10l1<sup>lox/lox</sup></i> and <i>Stra8â€iCre; Mov10l1<sup>lox/Δ</sup></i> mice. Genesis, 2013, 51,<br>481-490.                                     | 1.6  | 58        |
| 62 | The mitochondrial genome encodes abundant small noncoding RNAs. Cell Research, 2013, 23, 759-774.                                                                                                                                                    | 12.0 | 170       |
| 63 | Proteomic Analyses Reveal a Role of Cytoplasmic Droplets as an Energy Source during Epididymal Sperm Maturation. PLoS ONE, 2013, 8, e77466.                                                                                                          | 2.5  | 56        |
| 64 | The RNase III Enzyme DROSHA is Essential for MicroRNA Production and Spermatogenesis. Journal of Biological Chemistry, 2012, 287, 25173-25190.                                                                                                       | 3.4  | 168       |
| 65 | Male Germline Control of Transposable Elements1. Biology of Reproduction, 2012, 86, 162, 1-14.                                                                                                                                                       | 2.7  | 44        |
| 66 | Control of Messenger RNA Fate by RNAâ€Binding Proteins: An Emphasis on Mammalian Spermatogenesis. Journal of Andrology, 2012, 33, 309-337.                                                                                                           | 2.0  | 92        |
| 67 | Male germ cells express abundant endogenous siRNAs. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13159-13164.                                                                                         | 7.1  | 139       |
| 68 | Zmynd15 Encodes a Histone Deacetylase-dependent Transcriptional Repressor Essential for Spermiogenesis and Male Fertility. Journal of Biological Chemistry, 2010, 285, 31418-31426.                                                                  | 3.4  | 52        |
| 69 | Detection and Quantitative Analysis of Small RNAs by PCR. Methods in Molecular Biology, 2010, 629, 293-303.                                                                                                                                          | 0.9  | 10        |
| 70 | Sex chromosome inactivation in the male. Epigenetics, 2009, 4, 452-456.                                                                                                                                                                              | 2.7  | 55        |
| 71 | Many X-linked microRNAs escape meiotic sex chromosome inactivation. Nature Genetics, 2009, 41, 488-493.                                                                                                                                              | 21.4 | 188       |
| 72 | Male infertility caused by spermiogenic defects: Lessons from gene knockouts. Molecular and Cellular Endocrinology, 2009, 306, 24-32.                                                                                                                | 3.2  | 174       |

| #  | Article                                                                                                                                                                                          | IF  | CITATION: |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Spermiogenic Defects and Male Infertility.Wei Yan, M.D., Ph.D Biology of Reproduction, 2009, 81, 54-54.                                                                                          | 2.7 | O         |
| 74 | Birth of Mice after Intracytoplasmic Injection of Single Purified Sperm Nuclei and Detection of Messenger RNAs and MicroRNAs in the Sperm Nuclei1. Biology of Reproduction, 2008, 78, 896-902.   | 2.7 | 78        |
| 75 | Transgenic Rescue of Male Infertility Caused by Haploinsufficiency of Klhl10 in Mice Biology of Reproduction, 2008, 78, 196-196.                                                                 | 2.7 | O         |
| 76 | Catsper3 and Catsper4 Are Essential for Sperm Hyperactivated Motility and Male Fertility in the Mouse1. Biology of Reproduction, 2007, 77, 37-44.                                                | 2.7 | 150       |
| 77 | Lack of Spem1 causes aberrant cytoplasm removal, sperm deformation, and male infertility. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6852-6857. | 7.1 | 145       |
| 78 | Hyperglycemia-induced TET3 insufficiency is responsible for maternal transmission of glucose intolerance. Biology of Reproduction, 0, , .                                                        | 2.7 | 0         |
| 79 | Riding the wave: reproductive biology in China. Biology of Reproduction, 0, , .                                                                                                                  | 2.7 | O         |