
Lisa C Lindesmith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2187312/publications.pdf Version: 2024-02-01

LIGA CLINDESMITH

#	Article	IF	CITATIONS
1	Norwalk virus: How infectious is it?. Journal of Medical Virology, 2008, 80, 1468-1476.	5.0	1,019
2	Human susceptibility and resistance to Norwalk virus infection. Nature Medicine, 2003, 9, 548-553.	30.7	956
3	Mechanisms of GII.4 Norovirus Persistence in Human Populations. PLoS Medicine, 2008, 5, e31.	8.4	486
4	Durability of mRNA-1273 vaccine–induced antibodies against SARS-CoV-2 variants. Science, 2021, 373, 1372-1377.	12.6	459
5	Binding of Norwalk Virus-Like Particles to ABH Histo-Blood Group Antigens Is Blocked by Antisera from Infected Human Volunteers or Experimentally Vaccinated Mice. Journal of Virology, 2002, 76, 12335-12343.	3.4	256
6	Norovirus Infectivity in Humans and Persistence in Water. Applied and Environmental Microbiology, 2011, 77, 6884-6888.	3.1	248
7	Immunogenetic Mechanisms Driving Norovirus GII.4 Antigenic Variation. PLoS Pathogens, 2012, 8, e1002705.	4.7	242
8	Cellular and Humoral Immunity following Snow Mountain Virus Challenge. Journal of Virology, 2005, 79, 2900-2909.	3.4	236
9	Viral shape-shifting: norovirus evasion of the human immune system. Nature Reviews Microbiology, 2010, 8, 231-241.	28.6	236
10	Norovirus pathogenesis: mechanisms of persistence and immune evasion in human populations. Immunological Reviews, 2008, 225, 190-211.	6.0	200
11	Emergence of New Pandemic GII.4 Sydney Norovirus Strain Correlates With Escape From Herd Immunity. Journal of Infectious Diseases, 2013, 208, 1877-1887.	4.0	151
12	Norovirus GII.4 Strain Antigenic Variation. Journal of Virology, 2011, 85, 231-242.	3.4	148
13	Chimeric spike mRNA vaccines protect against Sarbecovirus challenge in mice. Science, 2021, 373, 991-998.	12.6	144
14	Emergence of a Norovirus GII.4 Strain Correlates with Changes in Evolving Blockade Epitopes. Journal of Virology, 2013, 87, 2803-2813.	3.4	140
15	Genetic Mapping of a Highly Variable Norovirus GII.4 Blockade Epitope: Potential Role in Escape from Human Herd Immunity. Journal of Virology, 2012, 86, 1214-1226.	3.4	139
16	Heterotypic Humoral and Cellular Immune Responses following Norwalk Virus Infection. Journal of Virology, 2010, 84, 1800-1815.	3.4	125
17	Multivalent norovirus vaccines induce strong mucosal and systemic blocking antibodies against multiple strains. Vaccine, 2006, 24, 5220-5234.	3.8	124
18	Broad Blockade Antibody Responses in Human Volunteers after Immunization with a Multivalent Norovirus VLP Candidate Vaccine: Immunological Analyses from a Phase I Clinical Trial. PLoS Medicine, 2015, 12, e1001807.	8.4	119

LISA C LINDESMITH

#	Article	IF	CITATIONS
19	Monoclonal Antibody-Based Antigenic Mapping of Norovirus GII.4-2002. Journal of Virology, 2012, 86, 873-883.	3.4	113
20	Norovirus Immunity and the Great Escape. PLoS Pathogens, 2012, 8, e1002921.	4.7	110
21	Herd Immunity to GII.4 Noroviruses Is Supported by Outbreak Patient Sera. Journal of Virology, 2009, 83, 5363-5374.	3.4	92
22	Expression and Self-Assembly of Norwalk Virus Capsid Protein from Venezuelan Equine Encephalitis Virus Replicons. Journal of Virology, 2002, 76, 3023-3030.	3.4	91
23	Rewiring the severe acute respiratory syndrome coronavirus (SARS-CoV) transcription circuit: Engineering a recombination-resistant genome. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12546-12551.	7.1	84
24	The State of Norovirus Vaccines. Clinical Infectious Diseases, 2014, 58, 1746-1752.	5.8	73
25	Vaccination-induced herd immunity: Successes and challenges. Journal of Allergy and Clinical Immunology, 2018, 142, 64-66.	2.9	73
26	Sera Antibody Repertoire Analyses Reveal Mechanisms of Broad and Pandemic Strain Neutralizing Responses after Human Norovirus Vaccination. Immunity, 2019, 50, 1530-1541.e8.	14.3	71
27	Alphavirus-Adjuvanted Norovirus-Like Particle Vaccines: Heterologous, Humoral, and Mucosal Immune Responses Protect against Murine Norovirus Challenge. Journal of Virology, 2009, 83, 3212-3227.	3.4	62
28	Within-Host Evolution Results in Antigenically Distinct GII.4 Noroviruses. Journal of Virology, 2014, 88, 7244-7255.	3.4	60
29	Characterization of Emerging GII.g/GII.12 Noroviruses from a Gastroenteritis Outbreak in the United States in 2010. Journal of Clinical Microbiology, 2011, 49, 3234-3244.	3.9	56
30	Particle Conformation Regulates Antibody Access to a Conserved GII.4 Norovirus Blockade Epitope. Journal of Virology, 2014, 88, 8826-8842.	3.4	54
31	CD300lf is the primary physiologic receptor of murine norovirus but not human norovirus. PLoS Pathogens, 2020, 16, e1008242.	4.7	44
32	GII.4 Human Norovirus: Surveying the Antigenic Landscape. Viruses, 2019, 11, 177.	3.3	43
33	Conformational Occlusion of Blockade Antibody Epitopes, a Novel Mechanism of GII.4 Human Norovirus Immune Evasion. MSphere, 2018, 3, .	2.9	42
34	Characterization of Blockade Antibody Responses in GII.2.1976 Snow Mountain Virus-Infected Subjects. Journal of Virology, 2014, 88, 829-837.	3.4	39
35	SARS-CoV-2 vaccines elicit durable immune responses in infant rhesus macaques. Science Immunology, 2021, 6, .	11.9	34
36	Development of a Broadly Accessible Venezuelan Equine Encephalitis Virus Replicon Particle Vaccine Platform. Journal of Virology, 2018, 92, .	3.4	33

LISA C LINDESMITH

#	Article	IF	CITATIONS
37	Chimeric GII.4 Norovirus Virus-Like-Particle-Based Vaccines Induce Broadly Blocking Immune Responses. Journal of Virology, 2014, 88, 7256-7266.	3.4	32
38	Serum Immunoglobulin A Cross-Strain Blockade of Human Noroviruses. Open Forum Infectious Diseases, 2015, 2, ofv084.	0.9	31
39	Emergence of Novel Human Norovirus GII.17 Strains Correlates With Changes in Blockade Antibody Epitopes. Journal of Infectious Diseases, 2017, 216, 1227-1234.	4.0	30
40	Antigenic Characterization of a Novel Recombinant GII.P16-GII.4 Sydney Norovirus Strain With Minor Sequence Variation Leading to Antibody Escape. Journal of Infectious Diseases, 2018, 217, 1145-1152.	4.0	30
41	Human Norovirus Detection and Production, Quantification, and Storage of Virusâ€Like Particles. Current Protocols in Microbiology, 2013, 31, 15K.1.1-15K.1.45.	6.5	27
42	Identification of Cross-Reactive Norovirus CD4 ⁺ T Cell Epitopes. Journal of Virology, 2010, 84, 8530-8538.	3.4	26
43	Virus–Host Interactions Between Nonsecretors and Human Norovirus. Cellular and Molecular Gastroenterology and Hepatology, 2020, 10, 245-267.	4.5	24
44	Preadaptation of pandemic GII.4Ânoroviruses in unsampled virus reservoirs years before emergence. Virus Evolution, 2020, 6, veaa067.	4.9	22
45	Human Norovirus Epitope D Plasticity Allows Escape from Antibody Immunity without Loss of Capacity for Binding Cellular Ligands. Journal of Virology, 2019, 93, .	3.4	20
46	Impact of Pre-Exposure History and Host Genetics on Antibody Avidity Following Norovirus Vaccination. Journal of Infectious Diseases, 2017, 215, 984-991.	4.0	18
47	Bat Caliciviruses and Human Noroviruses Are Antigenically Similar and Have Overlapping Histo-Blood Group Antigen Binding Profiles. MBio, 2018, 9, .	4.1	18
48	Secretor Status Strongly Influences the Incidence of Symptomatic Norovirus Infection in a Genotype-Dependent Manner in a Nicaraguan Birth Cohort. Journal of Infectious Diseases, 2022, 225, 105-115.	4.0	18
49	Predicted norovirus resurgence in 2021–2022 due to the relaxation of nonpharmaceutical interventions associated with COVID-19 restrictions in England: a mathematical modeling study. BMC Medicine, 2021, 19, 299.	5.5	18
50	Resolution of diarrhea in an immunocompromised patient with chronic norovirus gastroenteritis correlates with constitution of specific antibody blockade titer. Infection, 2016, 44, 551-554.	4.7	12
51	Human Norovirus Histo-Blood Group Antigen (HBGA) Binding Sites Mediate the Virus Specific Interactions with Lettuce Carbohydrates. Viruses, 2019, 11, 833.	3.3	12
52	Serological Humoral Immunity Following Natural Infection of Children with High Burden Gastrointestinal Viruses. Viruses, 2021, 13, 2033.	3.3	11
53	Production and Clinical Evaluation of Norwalk Gl.1 Virus Lot 001-09NV in Norovirus Vaccine Development. Journal of Infectious Diseases, 2020, 221, 919-926.	4.0	8
54	Bile Facilitates Human Norovirus Interactions with Diverse Histoblood Group Antigens, Compensating for Capsid Microvariation Observed in 2016–2017 GII.2 Strains. Viruses, 2020, 12, 989.	3.3	8

LISA C LINDESMITH

#	Article	IF	CITATIONS
55	Norovirus-Specific CD8+ T Cell Responses in Human Blood and Tissues. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 1267-1289.	4.5	8
56	Disulfide stabilization of human norovirus Gl.1 virus-like particles focuses immune response toward blockade epitopes. Npj Vaccines, 2020, 5, 110.	6.0	6
57	Antigenic Site Immunodominance Redirection Following Repeat Variant Exposure. Viruses, 2022, 14, 1293.	3.3	5
58	A luciferase-based approach for measuring HBGA blockade antibody titers against human norovirus. Journal of Virological Methods, 2021, 297, 114196.	2.1	4
59	Dose-Response of a Norovirus GII.2 Controlled Human Challenge Model Inoculum. Journal of Infectious Diseases, 2022, 226, 1771-1780.	4.0	1