Gianrico Filacchione

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2187287/publications.pdf

Version: 2024-02-01

178 papers 6,033 citations

50276 46 h-index 70 g-index

192 all docs

192 docs citations

192 times ranked 3262 citing authors

#	Article	IF	CITATIONS
1	AMBITION – comet nucleus cryogenic sample return. Experimental Astronomy, 2022, 54, 1077-1128.	3.7	4
2	Saturn's icy satellites investigated by Cassini - VIMS. V. Spectrophotometry. Icarus, 2022, 375, 114803.	2.5	3
3	Water ortho-to-para ratio in the coma of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2022, 663, A43.	5.1	3
4	Macro and micro structures of pebble-made cometary nuclei reconciled by seasonal evolution. Nature Astronomy, 2022, 6, 546-553.	10.1	20
5	Stability of the Jupiter Southern Polar Vortices Inspected Through Vorticity Using Juno/JIRAM Data. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	3
6	Bayesian analysis of Juno/JIRAM's NIR observations of Europa. Icarus, 2021, 357, 114215.	2.5	7
7	Saturn System. , 2021, , 123-132.		1
8	On the clouds and ammonia in Jupiter's upper troposphere from Juno JIRAM reflectivity observations. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4892-4907.	4.4	5
9	Oscillations and Stability of the Jupiter Polar Cyclones. Geophysical Research Letters, 2021, 48, e2021GL094235.	4.0	11
10	Morphology of the Auroral Tail of Io, Europa, and Ganymede From JIRAM Lâ€Band Imager. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029450.	2.4	15
11	Regions of interest on Ganymede's and Callisto's surfaces as potential targets for ESA's JUICE mission. Planetary and Space Science, 2021, 208, 105324.	1.7	12
12	VIS-IR Spectroscopy of Mixtures of Water Ice, Organic Matter, and Opaque Mineral in Support of Small Body Remote Sensing Observations. Minerals (Basel, Switzerland), 2021, 11, 1222.	2.0	4
13	Infrared observations of lo from Juno. Icarus, 2020, 341, 113607.	2.5	23
14	Juno/JIRAM: Planning and commanding activities. Advances in Space Research, 2020, 65, 598-615.	2.6	5
15	Mapping Io's Surface Composition With Juno/JIRAM. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006522.	3.6	8
16	The Philae lander reveals low-strength primitive ice inside cometary boulders. Nature, 2020, 586, 697-701.	27.8	40
17	Photometric modelling and VIS-IR albedo maps of Rhea from Cassini-VIMS. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 499, L62-L66.	3.3	3
18	Infrared Observations of Ganymede From the Jovian InfraRed Auroral Mapper on Juno. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006508.	3.6	16

#	Article	IF	CITATIONS
19	Temporal evolution of the permanent shadowed regions at Mercury poles: applications for spectral detection of ices by SIMBIOSYS-VIHI on BepiColombo mission. Monthly Notices of the Royal Astronomical Society, 2020, 498, 1308-1318.	4.4	3
20	Two‥ear Observations of the Jupiter Polar Regions by JIRAM on Board Juno. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006098.	3.6	24
21	Ammonium salts are a reservoir of nitrogen on a cometary nucleus and possibly on some asteroids. Science, 2020, 367, .	12.6	115
22	Preliminary estimation of the detection possibilities of Ganymede's water vapor environment with MAJIS. Planetary and Space Science, 2020, 191, 105004.	1.7	5
23	SIMBIO-SYS: Scientific Cameras and Spectrometer for the BepiColombo Mission. Space Science Reviews, 2020, 216, 1.	8.1	47
24	Rationale for BepiColombo Studies of Mercury's Surface and Composition. Space Science Reviews, 2020, 216, 1.	8.1	46
25	On the Spatial Distribution of Minor Species in Jupiter's Troposphere as Inferred From Juno JIRAM Data. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006206.	3.6	14
26	Infrared detection of aliphatic organics on a cometary nucleus. Nature Astronomy, 2020, 4, 500-505.	10.1	41
27	Development of a simulator of the SIMBIOSYS suite onboard the BepiColombo mission. Monthly Notices of the Royal Astronomical Society, 2020, 491, 1673-1689.	4.4	1
28	An orbital water-ice cycle on comet 67P from colour changes. Nature, 2020, 578, 49-52.	27.8	36
29	Kinetic Simulations of the Jovian Energetic Ion Circulation around Ganymede. Astrophysical Journal, 2020, 900, 74.	4.5	20
30	Hydroxylated Mg-rich Amorphous Silicates: A New Component of the 3.2 Î⅓m Absorption Band of Comet 67P/Churyumov–Gerasimenko. Astrophysical Journal Letters, 2020, 897, L37.	8.3	12
31	Cassini-VIMS observations of Saturnâ∈™s main rings: II. A spectrophotometric study by means of Monte Carlo ray-tracing and Hapkeâ∈™s theory. Icarus, 2019, 317, 242-265.	2.5	17
32	Scientific goals and technical challenges of the MAJIS imaging spectrometer for the JUICE mission. , 2019, , .		2
33	Analysis of night-side dust activity on comet 67P observed by VIRTIS-M: a new method to constrain the thermal inertia on the surface. Astronomy and Astrophysics, 2019, 630, A21.	5.1	8
34	Climatology of CH4, HCN and C2H2 in Titan's upper atmosphere from Cassini/VIMS observations. Icarus, 2019, 331, 83-97.	2.5	5
35	Close-range remote sensing of Saturn's rings during Cassini's ring-grazing orbits and Grand Finale. Science, 2019, 364, .	12.6	17
36	The changing temperature of the nucleus of comet 67P induced by morphological and seasonal effects. Nature Astronomy, 2019, 3, 649-658.	10.1	34

#	Article	IF	CITATIONS
37	The Thermal, Mechanical, Structural, and Dielectric Properties of Cometary Nuclei After Rosetta. Space Science Reviews, 2019, 215, 1.	8.1	61
38	Serendipitous infrared observations of Europa by Juno/JIRAM. Icarus, 2019, 328, 1-13.	2.5	15
39	Close Cassini flybys of Saturn's ring moons Pan, Daphnis, Atlas, Pandora, and Epimetheus. Science, 2019, 364, .	12.6	24
40	Comet 67P/CG Nucleus Composition and Comparison to Other Comets. Space Science Reviews, 2019, 215, 1.	8.1	32
41	Visible and Near-Infrared Spectral Analyses of Asteroids and Comets from Dawn and Rosetta. , 2019, , 413-427.		0
42	Synthesis of the morphological description of cometary dust at comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2019, 630, A24.	5.1	100
43	VIRTIS-H observations of the dust coma of comet 67P/Churyumov-Gerasimenko: spectral properties and color temperature variability with phase and elevation. Astronomy and Astrophysics, 2019, 630, A22.	5.1	17
44	Diurnal variation of dust and gas production in comet 67P/Churyumov-Gerasimenko at the inbound equinox as seen by OSIRIS and VIRTIS-M on board Rosetta. Astronomy and Astrophysics, 2019, 630, A23.	5.1	9
45	Spectral Analyses of Saturn's Moons Using the <i>Cassini</i> Visual Infrared Mapping Spectrometer. , 2019, , 428-441.		1
46	67P/Churyumov–Gerasimenko active areas before perihelion identified by GIADA and VIRTIS data fusion. Monthly Notices of the Royal Astronomical Society, 2019, 483, 2165-2176.	4.4	8
47	SIMBIO-SYS Near Earth Commissioning Phase: a step forward toward Mercury., 2019,,.		1
48	Clusters of cyclones encircling Jupiter's poles. Nature, 2018, 555, 216-219.	27.8	90
49	Photometric Modeling and VISâ€IR Albedo Maps of Dione From Cassiniâ€VIMS. Geophysical Research Letters, 2018, 45, 2184-2192.	4.0	7
50	Laboratory simulations of the Vis-NIR spectra of comet 67P using sub-µm sized cosmochemical analogues. Icarus, 2018, 306, 306-318.	2.5	23
51	Icy Saturnian satellites: Disk-integrated UV-IR characteristics and links to exogenic processes. Icarus, 2018, 300, 103-114.	2.5	25
52	The Advanced Optical and Thermomechanical Design of the JUICE/MAJIS Spectrometer. , 2018, , .		0
53	The Measurement of the Noise-Equivalent Spectral Radiance of SIMBIO-SYS/VIHI Spectrometer., 2018,,.		1
54	Thermal inertia and roughness of the nucleus of comet 67P/Churyumov–Gerasimenko from MIRO and VIRTIS observations. Astronomy and Astrophysics, 2018, 616, A122.	5.1	42

#	Article	IF	CITATIONS
55	Summer outbursts in the coma of comet 67P/Churyumov–Gerasimenko as observed by Rosetta–VIRTIS. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1235-1250.	4.4	20
56	Juno observations of spot structures and a split tail in Io-induced aurorae on Jupiter. Science, 2018, 361, 774-777.	12.6	53
57	First Estimate of Wind Fields in the Jupiter Polar Regions From JIRAMâ€Juno Images. Journal of Geophysical Research E: Planets, 2018, 123, 1511-1524.	3. 6	24
58	Photometric Modeling and VISâ€IR Albedo Maps of Tethys From Cassiniâ€VIMS. Geophysical Research Letters, 2018, 45, 6400-6407.	4.0	6
59	A Mercury surface radiometric model for SIMBIO-SYS instrument suite on board of BepiColombo mission. , $2018, , .$		7
60	The optical design of the MAJIS instrument on board of the JUICE mission. , 2018, , .		2
61	JIRAM, the Jovian Infrared Auroral Mapper. Space Science Reviews, 2017, 213, 393-446.	8.1	91
62	Infrared observations of Jovian aurora from Juno's first orbits: Main oval and satellite footprints. Geophysical Research Letters, 2017, 44, 5308-5316.	4.0	30
63	Preliminary results on the composition of Jupiter's troposphere in hot spot regions from the JIRAM/Juno instrument. Geophysical Research Letters, 2017, 44, 4615-4624.	4.0	20
64	Preliminary JIRAM results from Juno polar observations: 2. Analysis of the Jupiter southern H ₃ ⁺ emissions and comparison with the north aurora. Geophysical Research Letters, 2017, 44, 4633-4640.	4.0	20
65	Preliminary JIRAM results from Juno polar observations: 1. Methodology and analysis applied to the Jovian northern polar region. Geophysical Research Letters, 2017, 44, 4625-4632.	4.0	18
66	Characterization of the white ovals on Jupiter's southern hemisphere using the first data by the Juno/JIRAM instrument. Geophysical Research Letters, 2017, 44, 4660-4668.	4.0	15
67	Preliminary JIRAM results from Juno polar observations: 3. Evidence of diffuse methane presence in the Jupiter auroral regions. Geophysical Research Letters, 2017, 44, 4641-4648.	4.0	13
68	The pre-launch characterization of SIMBIO-SYS/VIHI imaging spectrometer for the BepiColombo mission to Mercury. I. Linearity, radiometry, and geometry calibrations. Review of Scientific Instruments, 2017, 88, 094502.	1.3	10
69	The pre-launch characterization of SIMBIO-SYS/VIHI imaging spectrometer for the BepiColombo mission to Mercury. II. Spectral calibrations. Review of Scientific Instruments, 2017, 88, 094503.	1.3	8
70	Comet 67P outbursts and quiescent coma at 1.3 au from the Sun: dust properties from Rosetta/VIRTIS-H observations. Monthly Notices of the Royal Astronomical Society, 2017, 469, S443-S458.	4.4	56
71	Analysis of IR-bright regions of Jupiter in JIRAM-Juno data: Methods and validation of algorithms. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 202, 200-209.	2.3	8
72	The day the Earth smiled. Nature Astronomy, 2017, 1, 582-582.	10.1	0

#	Article	IF	CITATIONS
73	Rosetta Alice/VIRTIS observations of the water vapour UV electroglow emissions around comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S416-S426.	4.4	12
74	Cometary coma dust size distribution from in situ IR spectra. Monthly Notices of the Royal Astronomical Society, 2017, 469, S598-S605.	4.4	12
75	How pristine is the interior of the comet 67P/Churyumov–Gerasimenko?. Monthly Notices of the Royal Astronomical Society, 2017, 469, S685-S694.	4.4	22
76	Photometric behaviour of 67P/Churyumov–Gerasimenko and analysis of its pre-perihelion diurnal variations. Monthly Notices of the Royal Astronomical Society, 2017, 469, S346-S356.	4.4	16
77	Properties of the dust in the coma of 67P/Churyumov-Gerasimenko observed with VIRTIS- M. Monthly Notices of the Royal Astronomical Society, 2016, , stw3197.	4.4	2
78	Three-dimensional direct simulation Monte-Carlo modeling of the coma of comet 67P/Churyumov-Gerasimenko observed by the VIRTIS and ROSINA instruments on board Rosetta. Astronomy and Astrophysics, 2016, 588, A134.	5.1	88
79	Analysis of the dust jet imaged by∢i>Rosetta∢/i>VIRTIS-M in the coma of comet 67P/Churyumov–Gerasimenko on 2015 April 12. Monthly Notices of the Royal Astronomical Society, 2016, 462, S370-S375.	4.4	8
80	Detection of exposed H ₂ O ice on the nucleus of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 595, A102.	5.1	67
81	Water and carbon dioxide distribution in the 67P/Churyumov-Gerasimenko coma from VIRTIS-M infrared observations. Astronomy and Astrophysics, 2016, 589, A45.	5.1	62
82	Juno's Earth flyby: the Jovian infrared Auroral Mapper preliminary results. Astrophysics and Space Science, 2016, 361, 1.	1.4	14
83	Investigation into the disparate origin of CO2 and H2O outgassing for Comet 67/P. Icarus, 2016, 277, 78-97.	2.5	61
84	Refractory and semi-volatile organics at the surface of comet 67P/Churyumov-Gerasimenko: Insights from the VIRTIS/Rosetta imaging spectrometer. Icarus, 2016, 272, 32-47.	2.5	127
85	Chromophores from photolyzed ammonia reacting with acetylene: Application to Jupiter's Great Red Spot. Icarus, 2016, 274, 106-115.	2.5	35
86	The global surface composition of 67P/CG nucleus by Rosetta/VIRTIS. (I) Prelanding mission phase. lcarus, 2016, 274, 334-349.	2.5	54
87	Cassini's geological and compositional view of Tethys. Icarus, 2016, 274, 1-22.	2.5	13
88	Clouds and hazes vertical structure of a Saturn's giant vortex from Cassini/VIMS-V data analysis. lcarus, 2016, 278, 215-237.	2.5	7
89	Direct Simulation Monte Carlo modelling of the major species in the coma of comet 67P/Churyumov-Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2016, 462, S156-S169.	4.4	87
90	Evolution of CO ₂ , CH ₄ , and OCS abundances relative to H ₂ O in the coma of comet 67P around perihelion from <i>Rosetta</i> /I>/VIRTIS-H observations. Monthly Notices of the Royal Astronomical Society, 2016, 462, S170-S183.	4.4	72

#	Article	IF	CITATIONS
91	Seasonal exposure of carbon dioxide ice on the nucleus of comet 67P/Churyumov-Gerasimenko. Science, 2016, 354, 1563-1566.	12.6	61
92	Disk-resolved photometry of Vesta and Lutetia and comparison with other asteroids. Icarus, 2016, 267, 204-216.	2.5	11
93	Saturn's icy satellites investigated by Cassini-VIMS. IV. Daytime temperature maps. Icarus, 2016, 271, 292-313.	2.5	23
94	Exposed water ice on the nucleus of comet 67P/Churyumov–Gerasimenko. Nature, 2016, 529, 368-372.	27.8	104
95	First observations of H ₂ O and CO ₂ vapor in comet 67P/Churyumov-Gerasimenko made by VIRTIS onboard Rosetta. Astronomy and Astrophysics, 2015, 583, A6.	5.1	77
96	Photometric properties of comet 67P/Churyumov-Gerasimenko from VIRTIS-M onboard Rosetta. Astronomy and Astrophysics, 2015, 583, A31.	5.1	71
97	The EChO science case. Experimental Astronomy, 2015, 40, 329-391.	3.7	31
98	Terrestrial <scp>OH</scp> nightglow measurements during the <scp>Rosetta</scp> flyby. Geophysical Research Letters, 2015, 42, 5670-5677.	4.0	7
99	The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta. Science, 2015, 347, aaa0628.	12.6	293
100	FAINT LUMINESCENT RING OVER SATURN'S POLAR HEXAGON. Astrophysical Journal Letters, 2015, 808, L16.	8.3	6
101	The diurnal cycle of water ice on comet 67P/Churyumov–Gerasimenko. Nature, 2015, 525, 500-503.	27.8	199
102	VIRTIS on Rosetta: a unique technique to observe comet 67P/Churyumov-Gerasimenko – first results and prospects. Proceedings of SPIE, 2015, , .	0.8	4
103	The visible and near infrared module of EChO. Experimental Astronomy, 2015, 40, 753-769.	3.7	O
104	An improved version of the Visible and Near Infrared (VNIR) spectrometer of EChO. Proceedings of SPIE, 2014, , .	0.8	0
105	Characterization of the integrating sphere for the on-ground calibration of the SIMBIOSYS instrument for the BepiColombo ESA mission. Proceedings of SPIE, 2014, , .	0.8	6
106	Preparing EChO space mission: laboratory simulation of planetary atmospheres. , 2014, , .		0
107	The science case for an orbital mission to Uranus: Exploring the origins and evolution of ice giant planets. Planetary and Space Science, 2014, 104, 122-140.	1.7	56
108	Spectroscopic classification of icy satellites of Saturn II: Identification of terrain units on Rhea. Icarus, 2014, 234, 1-16.	2.5	26

#	Article	IF	Citations
109	A test of Hapke's model by means of Monte Carlo ray-tracing. Icarus, 2014, 237, 293-305.	2.5	22
110	Cassini–VIMS observations of Saturn's main rings: I. Spectral properties and temperature radial profiles variability with phase angle and elevation. Icarus, 2014, 241, 45-65.	2.5	24
111	Analysis of Rosetta/VIRTIS spectra of earth using observations from ENVISAT/AATSR, TERRA/MODIS and ENVISAT/SCIAMACHY, and radiative-transfer simulations. Planetary and Space Science, 2014, 90, 37-59.	1.7	6
112	Spectroscopic classification of icy satellites of saturn $\hat{a} \in \H$ Identification of terrain units on dione and rhea. , 2014, , .		0
113	JIRAM, the Jovian Infrared Auroral Mapper. , 2014, , 271-324.		4
114	Connections between spectra and structure in Saturn's main rings based on Cassini VIMS data. Icarus, 2013, 223, 105-130.	2.5	40
115	Pre-launch calibrations of the Vis-IR Hyperspectral Imager (VIHI) onboard BepiColombo, the ESA mission to Mercury. Proceedings of SPIE, 2013, , .	0.8	5
116	Spectroscopic classification of icy satellites of Saturn I: Identification of terrain units on Dione. Icarus, 2013, 226, 1331-1349.	2.5	22
117	Comparative analysis of airglow emissions in terrestrial planets, observed with VIRTIS-M instruments on board Rosetta and Venus Express. Icarus, 2013, 226, 1115-1127.	2.5	11
118	THE RADIAL DISTRIBUTION OF WATER ICE AND CHROMOPHORES ACROSS SATURN'S SYSTEM. Astrophysical Journal, 2013, 766, 76.	4.5	26
119	The visible and near infrared (VNIR) spectrometer of EChO. , 2012, , .		2
120	Saturn's icy satellites and rings investigated by Cassini–VIMS: III – Radial compositional variability. Icarus, 2012, 220, 1064-1096.	2.5	86
121	Emitted power of Jupiter based on Cassini CIRS and VIMS observations. Journal of Geophysical Research, 2012, 117, .	3.3	17
122	Interpretation of combined infrared, submillimeter, and millimeter thermal flux data obtained during the Rosetta fly-by of Asteroid (21) Lutetia. Icarus, 2012, 221, 395-404.	2.5	47
123	The surface composition of lapetus: Mapping results from Cassini VIMS. Icarus, 2012, 218, 831-860.	2.5	136
124	Mapping Titan's surface features within the visible spectrum via Cassini VIMS. Planetary and Space Science, 2012, 60, 52-61.	1.7	25
125	The Saturnian satellite Rhea as seen by Cassini VIMS. Planetary and Space Science, 2012, 61, 142-160.	1.7	38
126	The light curve of asteroid 21 Lutetia measured by VIRTIS-M during the Rosetta fly-by. Planetary and Space Science, 2012, 66, 9-22.	1.7	12

#	Article	IF	Citations
127	Spectral and mineralogical characterization of inner main-belt V-type asteroids. Astronomy and Astrophysics, 2011, 533, A77.	5.1	38
128	Saturn's F ring grains: Aggregates made of crystalline water ice. Icarus, 2011, 215, 682-694.	2.5	20
129	Hapke modeling of Rhea surface properties through Cassini-VIMS spectra. Icarus, 2011, 214, 541-555.	2.5	64
130	The VIR Spectrometer. Space Science Reviews, 2011, 163, 329-369.	8.1	217
131	The Surface Composition and Temperature of Asteroid 21 Lutetia As Observed by Rosetta/VIRTIS. Science, 2011, 334, 492-494.	12.6	110
132	Correlations between VIMS and RADAR data over the surface of Titan: Implications for Titan's surface properties. Icarus, 2010, 208, 366-384.	2.5	8
133	SIMBIO-SYS: The spectrometer and imagers integrated observatory system for the BepiColombo planetary orbiter. Planetary and Space Science, 2010, 58, 125-143.	1.7	70
134	VIS-NIR Imaging Spectroscopy of Mercury's Surface: SIMBIO-SYS/VIHI Experiment Onboard the BepiColombo Mission. IEEE Transactions on Geoscience and Remote Sensing, 2010, , .	6.3	14
135	Calibration of Hyperspectral Imaging Data: VIRTIS-M Onboard Venus Express. IEEE Transactions on Geoscience and Remote Sensing, 2010, , .	6.3	6
136	The light curve of asteroid 2867 Steins measured by VIRTIS-M during the Rosetta fly-by. Planetary and Space Science, 2010, 58, 1066-1076.	1.7	11
137	Carbon dioxide on the satellites of Saturn: Results from the Cassini VIMS investigation and revisions to the VIMS wavelength scale. Icarus, 2010, 206, 561-572.	2.5	78
138	Cassini spectra and photometry 0.25–5.1 μm of the small inner satellites of Saturn. Icarus, 2010, 206, 524-536.	2.5	16
139	Saturn's icy satellites investigated by Cassini–VIMS. Icarus, 2010, 206, 507-523.	2.5	47
140	Characterization of Titan's Ontario Lacus region from Cassini/VIMS observations. Icarus, 2010, 210, 823-831.	2.5	16
141	Probing the origin of the dark material on Iapetus. Monthly Notices of the Royal Astronomical Society, 2010, 403, 1113-1130.	4.4	38
142	An Evolving View of Saturn's Dynamic Rings. Science, 2010, 327, 1470-1475.	12.6	127
143	The spectrum of a Saturn ring spoke from Cassini/VIMS. Geophysical Research Letters, 2010, 37, .	4.0	6
144	Martian atmosphere as observed by VIRTISâ€M on Rosetta spacecraft. Journal of Geophysical Research, 2010, 115, .	3.3	10

#	Article	IF	CITATIONS
145	The VIR Spectrometer. , 2010, , 329-369.		4
146	VIS-NIR imaging spectroscopy of the Mercury's surface: SIMBIO-SYS/VIHI experiment onboard the Bepi Colombo mission. , 2009, , .		0
147	Saturn's Titan: Surface change, ammonia, and implications for atmospheric and tectonic activity. Icarus, 2009, 199, 429-441.	2.5	69
148	Saturn Satellites as Seen by Cassini Mission. Earth, Moon and Planets, 2009, 105, 289-310.	0.6	4
149	Calibration pipeline of VIS-NIR imaging spectrometers for planetary exploration: The rosetta VIRTIS-M case., 2009,,.		3
150	Photometric changes on Saturn's Titan: Evidence for active cryovolcanism. Geophysical Research Letters, 2009, 36, .	4.0	38
151	VIRTIS: An Imaging Spectrometer for the ROSETTA Mission. , 2009, , 563-585.		3
152	Ring Particle Composition and Size Distribution. , 2009, , 459-509.		58
153	Hydrocarbons on Saturn's satellites lapetus and Phoebe. Icarus, 2008, 193, 334-343.	2.5	86
154	Identification of spectral units on Phoebe. Icarus, 2008, 193, 233-251.	2.5	32
155	A close look at Saturn's rings with Cassini VIMS. Icarus, 2008, 193, 182-212.	2.5	113
156	Distribution of icy particles across Enceladus' surface as derived from Cassini-VIMS measurements. Icarus, 2008, 193, 407-419.	2. 5	64
157	JIRAM, the Image Spectrometer in the Near Infrared on Board the Juno Mission to Jupiter. Astrobiology, 2008, 8, 613-622.	3.0	17
158	Saturn's icy satellites investigated by Cassini-VIMS. Icarus, 2007, 186, 259-290.	2.5	62
159	Surface composition of Hyperion. Nature, 2007, 448, 54-56.	27.8	56
160	A dynamic upper atmosphere of Venus as revealed by VIRTIS on Venus Express. Nature, 2007, 450, 641-645.	27.8	95
161	South-polar features on Venus similar to those near the north pole. Nature, 2007, 450, 637-640.	27.8	110
162	Virtis: An Imaging Spectrometer for the Rosetta Mission. Space Science Reviews, 2007, 128, 529-559.	8.1	181

#	Article	IF	CITATIONS
163	High-resolution CASSINI-VIMS mosaics of Titan and the icy Saturnian satellites. Planetary and Space Science, 2006, 54, 1146-1155.	1.7	24
164	Composition of Titan's surface from Cassini VIMS. Planetary and Space Science, 2006, 54, 1524-1539.	1.7	89
165	TITAN'S GROUND REFLECTANCE RETRIEVAL FROM CASSINI-VIMS DATA TAKEN DURING THE JULY 2ND, 2004 FLY-BY AT 2 AM UT. Earth, Moon and Planets, 2006, 96, 109-117.	0.6	2
166	G-MODE CLASSIFICATION OF SPECTROSCOPIC DATA. Earth, Moon and Planets, 2006, 96, 165-197.	0.6	8
167	On-ground characterization of Rosetta/VIRTIS-M. II. Spatial and radiometric calibrations. Review of Scientific Instruments, 2006, 77, 103106.	1.3	34
168	On-ground characterization of Rosetta/VIRTIS-M. I. Spectral and geometrical calibrations. Review of Scientific Instruments, 2006, 77, 093109.	1.3	42
169	VISPO project: visible image-spectrometer for planetary observations. New Astronomy, 2004, 9, 635-640.	1.8	O
170	Cassini VIMS observations of the Galilean satellites including the VIMS calibration procedure. Icarus, 2004, 172, 104-126.	2.5	61
171	CASSINI/VIMS-V at Jupiter: Radiometric calibration test and data results. Planetary and Space Science, 2004, 52, 661-670.	1.7	27
172	Principal components analysis of Jupiter VIMS spectra. Advances in Space Research, 2004, 34, 1640-1646.	2.6	4
173	Virtis Experiment at Churyumov — Gerasimenko Comet, New Rosetta Target. Astrophysics and Space Science Library, 2004, , 223-236.	2.7	4
174	Observations with the Visual and Infrared Mapping Spectrometer (VIMS) during Cassini's flyby of Jupiter. Icarus, 2003, 164, 461-470.	2.5	48
175	Cassini-VIMS at Jupiter: solar occultation measurements using Io. Icarus, 2003, 166, 75-84.	2.5	7
176	The temporal evolution of exposed water ice-rich areas on the surface of 67P/Churyumov-Gerasimenko: spectral analysis. Monthly Notices of the Royal Astronomical Society, 0, , stw3281.	4.4	13
177	and seasonal variability. Monthly Notices of the Royal Astronomical Society, 0, , stw3177.	4.4	10
178	The Rings of Saturn. , 0, , 51-92.		10