Choun-Sea Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2186927/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biology, 2016, 17, 134.	8.8	1,013
2	Tape-Arabidopsis Sandwich - a simpler Arabidopsis protoplast isolation method. Plant Methods, 2009, 5, 16.	4.3	750
3	Mutation of the <i>Arabidopsis NRT1.5</i> Nitrate Transporter Causes Defective Root-to-Shoot Nitrate Transport Â. Plant Cell, 2008, 20, 2514-2528.	6.6	419
4	The <i>Arabidopsis</i> Nitrate Transporter NRT1.7, Expressed in Phloem, Is Responsible for Source-to-Sink Remobilization of Nitrate Â. Plant Cell, 2009, 21, 2750-2761.	6.6	307
5	Application of protoplast technology to CRISPR/Cas9 mutagenesis: from singleâ€cell mutation detection to mutant plant regeneration. Plant Biotechnology Journal, 2018, 16, 1295-1310.	8.3	222
6	Mutation of a Nitrate Transporter, AtNRT1:4, Results in a Reduced Petiole Nitrate Content and Altered Leaf Development. Plant and Cell Physiology, 2004, 45, 1139-1148.	3.1	208
7	Complete chloroplast genome of Oncidium Gower Ramsey and evaluation of molecular markers for identification and breeding in Oncidiinae. BMC Plant Biology, 2010, 10, 68.	3.6	161
8	The location and translocation of ndh genes of chloroplast origin in the Orchidaceae family. Scientific Reports, 2015, 5, 9040.	3.3	143
9	Anticancer effects of tanshinone I in human non-small cell lung cancer. Molecular Cancer Therapeutics, 2008, 7, 3527-3538.	4.1	119
10	Genome Sequences Provide Insights into the Reticulate Origin and Unique Traits of Woody Bamboos. Molecular Plant, 2019, 12, 1353-1365.	8.3	116
11	Concomitant loss of <scp>NDH</scp> complexâ€related genes within chloroplast and nuclear genomes in some orchids. Plant Journal, 2017, 90, 994-1006.	5.7	99
12	NDH expression marks major transitions in plant evolution and reveals coordinate intracellular gene loss. BMC Plant Biology, 2015, 15, 100.	3.6	89
13	Lineage-Specific Reductions of Plastid Genomes in an Orchid Tribe with Partially and Fully Mycoheterotrophic Species. Genome Biology and Evolution, 2016, 8, 2164-2175.	2.5	81
14	Transcriptomeâ€wide analysis of the <scp>MADS</scp> â€box gene family in the orchid <i><scp>E</scp>rycina pusilla</i> . Plant Biotechnology Journal, 2016, 14, 284-298.	8.3	74
15	Complete Chloroplast Genome Sequence of an Orchid Model Plant Candidate: Erycina pusilla Apply in Tropical Oncidium Breeding. PLoS ONE, 2012, 7, e34738.	2.5	70
16	Regulatory cascade involving transcriptional and N-end rule pathways in rice under submergence. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3300-3309.	7.1	67
17	Screening a cDNA Library for Protein–Protein Interactions Directly in Planta. Plant Cell, 2012, 24, 1746-1759.	6.6	60
18	Ectopic expression of an EAR motif deletion mutant of SIERF3 enhances tolerance to salt stress and Ralstonia solanacearum in tomato, Planta, 2010, 232, 1075-1086.	3.2	59

#	Article	IF	CITATIONS
19	MSRB7 reverses oxidation of GSTF2/3 to confer tolerance of Arabidopsis thaliana to oxidative stress. Journal of Experimental Botany, 2014, 65, 5049-5062.	4.8	58
20	Title is missing!. Plant Cell, Tissue and Organ Culture, 2004, 76, 75-82.	2.3	56
21	Highâ€efficiency <scp>CRISPR</scp> /Casâ€based editing of <i>Phalaenopsis</i> orchid <i><scp>MADS</scp></i> genes. Plant Biotechnology Journal, 2020, 18, 889-891.	8.3	55
22	Arabidopsis Root-Abundant Cytosolic Methionine Sulfoxide Reductase B Genes MsrB7 and MsrB8 are Involved in Tolerance to Oxidative Stress. Plant and Cell Physiology, 2012, 53, 1707-1719.	3.1	54
23	Phylogenomics and Plastome Evolution of Tropical Forest Grasses (Leptaspis, Streptochaeta: Poaceae). Frontiers in Plant Science, 2016, 7, 1993.	3.6	49
24	Establishment of an Agrobacterium-mediated genetic transformation procedure for the experimental model orchid Erycina pusilla. Plant Cell, Tissue and Organ Culture, 2015, 120, 211-220.	2.3	48
25	Plastid Transformation: How Does it Work? Can it Be Applied to Crops? What Can it Offer?. International Journal of Molecular Sciences, 2020, 21, 4854.	4.1	47
26	Global transcriptome analysis and identification of a CONSTANS-like gene family in the orchid Erycina pusilla. Planta, 2013, 237, 1425-1441.	3.2	42
27	Catalog of Erycina pusilla miRNA and categorization of reproductive phase-related miRNAs and their target gene families. Plant Molecular Biology, 2013, 82, 193-204.	3.9	39
28	DNA-free CRISPR-Cas9 gene editing of wild tetraploid tomato <i>Solanum peruvianum</i> using protoplast regeneration. Plant Physiology, 2022, 188, 1917-1930.	4.8	39
29	BeMADS1 is a key to delivery MADSs into nucleus in reproductive tissues-De novo characterization of Bambusa edulis transcriptome and study of MADS genes in bamboo floral development. BMC Plant Biology, 2014, 14, 179.	3.6	35
30	Protoplasts: From Isolation to CRISPR/Cas Genome Editing Application. Frontiers in Genome Editing, 2021, 3, 717017.	5.2	34
31	In vitro flowering of green and albino Dendrocalamus latiflorus. New Forests, 2007, 34, 177-186.	1.7	29
32	Integration of molecular biology tools for identifying promoters and genes abundantly expressed in flowers of Oncidium Gower Ramsey. BMC Plant Biology, 2011, 11, 60.	3.6	27
33	Application of Cas12a and nCas9-activation-induced cytidine deaminase for genome editing and as a non-sexual strategy to generate homozygous/multiplex edited plants in the allotetraploid genome of tobacco. Plant Molecular Biology, 2019, 101, 355-371.	3.9	27
34	Analysis of the cellulose synthase genes associated with primary cell wall synthesis in Bambusa oldhamii. Phytochemistry, 2010, 71, 1270-1279.	2.9	26
35	Chloroplast genome aberration in micropropagation-derived albino Bambusa edulis mutants, ab1 and ab2. Plant Cell, Tissue and Organ Culture, 2007, 88, 147-156.	2.3	24
36	Identification of ESTs differentially expressed in green and albino mutant bamboo (Bambusa edulis) by suppressive subtractive hybridization (SSH) and microarray analysis. Plant Cell, Tissue and Organ Culture, 2006, 86, 169-175.	2.3	23

#	Article	IF	CITATIONS
37	High-performance FRET biosensors for single-cell and in vivo lead detection. Biosensors and Bioelectronics, 2020, 168, 112571.	10.1	21
38	Flowering of Woody Bamboo in Tissue Culture Systems. Frontiers in Plant Science, 2017, 8, 1589.	3.6	20
39	Improving Multiple Shoot Proliferation in Bamboo Mosaic Virus-free Bambusa oldhamii Munro Propagation by Liquid Culture. Hortscience: A Publication of the American Society for Hortcultural Science, 2007, 42, 1243-1246.	1.0	18
40	Analysis of the expression of BohLOL1, which encodes an LSD1-like zinc finger protein in Bambusa oldhamii. Planta, 2011, 234, 1179-1189.	3.2	17
41	Genome Editing and Protoplast Regeneration to Study Plant–Pathogen Interactions in the Model Plant Nicotiana benthamiana. Frontiers in Genome Editing, 2020, 2, 627803.	5.2	17
42	Differential Expression of Genes Encoding Acid Invertases in Multiple Shoots of Bamboo in Response to Various Phytohormones and Environmental Factors. Journal of Agricultural and Food Chemistry, 2013, 61, 4396-4405.	5.2	16
43	How to start your monocot CRISPR/Cas project: plasmid design, efficiency detection, and offspring analysis. Rice, 2020, 13, 9.	4.0	15
44	Shoot regeneration, re-flowering and post flowering survival in bamboo inflorescence culture. Plant Cell, Tissue and Organ Culture, 2005, 82, 243-249.	2.3	13
45	Effects of OsCDPK1 on the Structure and Physicochemical Properties of Starch in Developing Rice Seeds. International Journal of Molecular Sciences, 2018, 19, 3247.	4.1	10
46	Establishment of a cDNA library from Bambusa edulis Murno in vitro-grown shoots. Plant Cell, Tissue and Organ Culture, 2008, 95, 21-27.	2.3	9
47	Efficient and Economical Targeted Insertion in Plant Genomes via Protoplast Regeneration. CRISPR Journal, 2021, 4, 752-760.	2.9	9
48	<i>Arabidopsis</i> RAB8A, RAB8B and RAB8D Proteins Interact with Several RTNLB Proteins and are Involved in the <i>Agrobacterium tumefaciens</i> Infection Process. Plant and Cell Physiology, 2021, 62, 1572-1588.	3.1	8
49	Effects of growth regulators on inflorescence proliferation of Bambusa edulis. Plant Growth Regulation, 2004, 43, 221-225.	3.4	7
50	Effects of Growth Regulators on Direct Flowering of Isolated Ginseng Buds in vitro. Plant Cell, Tissue and Organ Culture, 2005, 83, 241-244.	2.3	7
51	Cytogenetic and cytometric analyses in artificial intercytotypic hybrids of the emergent orchid model species Erycina pusilla. Euphytica, 2015, 206, 533-539.	1.2	7
52	Differential Protein Expression of Two Photosystem II Subunits, PsbO and PsbP, in an Albino Mutant of Bambusa edulis with Chloroplast DNA Aberration. Journal of the American Society for Horticultural Science, 2008, 133, 270-277.	1.0	7
53	Identification of repressed gene transcript accumulation in three albino mutants of <i>Bambusa edulis</i> Munro by cDNA microarray analysis. Journal of the Science of Food and Agriculture, 2009, 89, 2308-2316.	3.5	4
54	Two reported cytotypes of the emergent orchid model species Erycina pusilla are two different species. Euphytica, 2017, 213, 1.	1.2	4

#	Article	IF	CITATIONS
55	A Genetic Algorithm for Diploid Genome Reconstruction Using Paired-End Sequencing. PLoS ONE, 2016, 11, e0166721.	2.5	3
56	Changes in the Morphology and Cation Content of a Bambusa edulis Xylem Mutant, vse, Derived from Somaclonal Variation. Journal of the American Society for Horticultural Science, 2006, 131, 445-451.	1.0	3
57	Application of Protoplast Regeneration to CRISPR/Cas9 Mutagenesis in Nicotiana tabacum. Methods in Molecular Biology, 2022, 2464, 49-64.	0.9	2
58	The Application of the Chloroplast Genome of <i>Oncidium</i> in Plant Identification and Breeding in Oncidiinae. , 2011, , 253-266.		0
59	Molecular Characterization of Ethylene Response Sensor 1 (BoERS1) in Bambusa oldhamii. Plant Molecular Biology Reporter, 2016, 34, 387-398.	1.8	0