Norman J Wagner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2186622/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thixotropy. Advances in Colloid and Interface Science, 2009, 147-148, 214-227.	14.7	824
2	Shear thickening in colloidal dispersions. Physics Today, 2009, 62, 27-32.	0.3	756
3	Title is missing!. Journal of Materials Science, 2003, 38, 2825-2833.	3.7	709
4	Reversible shear thickening in monodisperse and bidisperse colloidal dispersions. Journal of Rheology, 1996, 40, 899-916.	2.6	419
5	Stab resistance of shear thickening fluid (STF)-treated fabrics. Composites Science and Technology, 2007, 67, 565-578.	7.8	362
6	The effects of particle size on reversible shear thickening of concentrated colloidal dispersions. Journal of Chemical Physics, 2001, 114, 10514-10527.	3.0	324
7	Electrosteric Stabilization of Colloidal Dispersions. Langmuir, 2002, 18, 6381-6390.	3.5	306
8	The Microstructure and Rheology of Mixed Cationic/Anionic Wormlike Micelles. Langmuir, 2003, 19, 4079-4089.	3.5	283
9	Dynamic properties of shear thickening colloidal suspensions. Rheologica Acta, 2003, 42, 199-208.	2.4	277
10	The effects of interparticle interactions and particle size on reversible shear thickening: Hard-sphere colloidal dispersions. Journal of Rheology, 2001, 45, 1205-1222.	2.6	274
11	Optical Measurement of the Contributions of Colloidal Forces to the Rheology of Concentrated Suspensions. Journal of Colloid and Interface Science, 1995, 172, 171-184.	9.4	258
12	Flow-small angle neutron scattering measurements of colloidal dispersion microstructure evolution through the shear thickening transition. Journal of Chemical Physics, 2002, 117, 10291-10302.	3.0	256
13	Macromolecular diffusion and release from self-assembled β-hairpin peptide hydrogels. Biomaterials, 2009, 30, 1339-1347.	11.4	212
14	The rheology and microstructure of acicular precipitated calcium carbonate colloidal suspensions through the shear thickening transition. Journal of Rheology, 2005, 49, 719-746.	2.6	166
15	Effect of Particle Hardness on the Penetration Behavior of Fabrics Intercalated with Dry Particles and Concentrated Particleâ `Fluid Suspensions. ACS Applied Materials & Interfaces, 2009, 1, 2602-2612.	8.0	161
16	The effect of protein structure on their controlled release from an injectable peptide hydrogel. Biomaterials, 2010, 31, 9527-9534.	11.4	157
17	Observation of Small Cluster Formation in Concentrated Monoclonal Antibody Solutions and Its Implications to Solution Viscosity. Biophysical Journal, 2014, 106, 1763-1770.	0.5	146
18	Dynamical Arrest Transition in Nanoparticle Dispersions with Short-Range Interactions. Physical Review Letters, 2011, 106, 105704.	7.8	140

#	Article	IF	CITATIONS
19	Yarn Pull-Out as a Mechanism for Dissipating Ballistic Impact Energy in Kevlar® KM-2 Fabric. Textile Reseach Journal, 2004, 74, 920-928.	2.2	134
20	Atomistic simulation of water and salt transport in the reverse osmosis membrane FT-30. Journal of Membrane Science, 1998, 139, 1-16.	8.2	133
21	Large amplitude oscillatory shear (LAOS) measurements to obtain constitutive equation model parameters: Giesekus model of banding and nonbanding wormlike micelles. Journal of Rheology, 2012, 56, 333-351.	2.6	132
22	Viscosimetric, Hydrodynamic, and Conformational Properties of Dendrimers and Dendrons. Macromolecules, 2001, 34, 8580-8585.	4.8	131
23	Rheology and spatially resolved structure of cetyltrimethylammonium bromide wormlike micelles through the shear banding transition. Journal of Rheology, 2009, 53, 727-756.	2.6	127
24	Formation of AOT/Brine Multilamellar Vesicles. Langmuir, 1996, 12, 3122-3126.	3.5	120
25	Formation and Rheology of Viscoelastic "Double Networks―in Wormlike Micelleâ^'Nanoparticle Mixtures. Langmuir, 2010, 26, 8049-8060.	3.5	119
26	Influence of Nanoparticle Addition on the Properties of Wormlike Micellar Solutions. Langmuir, 2008, 24, 7718-7726.	3.5	117
27	Microstructure of shear-thickening concentrated suspensions determined by flow-USANS. Rheologica Acta, 2009, 48, 897-908.	2.4	116
28	Rheology of branched wormlike micelles. Current Opinion in Colloid and Interface Science, 2014, 19, 530-535.	7.4	115
29	Effects of pairwise versus many-body forces on high-stress plastic deformation. Physical Review A, 1991, 43, 2655-2661.	2.5	110
30	Agglomeration and breakage of nanoparticles in stirred media mills—a comparison of different methods and models. Chemical Engineering Science, 2006, 61, 135-148.	3.8	110
31	Current trends in suspension rheology. Journal of Non-Newtonian Fluid Mechanics, 2009, 157, 147-150.	2.4	106
32	Small-Angle Neutron Scattering Characterization of Monoclonal Antibody Conformations and Interactions at High Concentrations. Biophysical Journal, 2013, 105, 720-731.	0.5	106
33	Grand canonical Brownian dynamics simulation of colloidal adsorption. Journal of Chemical Physics, 1997, 107, 9157-9167.	3.0	103
34	Generalized phase behavior of cluster formation in colloidal dispersions with competing interactions. Soft Matter, 2014, 10, 5061-5071.	2.7	103
35	Material properties of the shear-thickened state in concentrated near hard-sphere colloidal dispersions. Journal of Rheology, 2014, 58, 949-967.	2.6	102
36	Viscoelasticity and shear melting of colloidal star polymer glasses. Journal of Rheology, 2007, 51, 297-316.	2.6	101

#	Article	IF	CITATIONS
37	Dynamical Arrest, Percolation, Gelation, and Glass Formation in Model Nanoparticle Dispersions with Thermoreversible Adhesive Interactions. Langmuir, 2012, 28, 1866-1878.	3.5	100
38	Dynamic shear rheology of a thixotropic suspension: Comparison of an improved structure-based model with large amplitude oscillatory shear experiments. Journal of Rheology, 2016, 60, 433-450.	2.6	99
39	Plasmon Resonance Measurements of the Adsorption and Adsorption Kinetics of a Biopolymer onto Gold Nanocolloids. Langmuir, 2001, 17, 957-960.	3.5	98
40	Theory and kinematic measurements of the mechanics of stable electrospun polymer jets. Polymer, 2008, 49, 2924-2936.	3.8	98
41	The Effect of Rheological Parameters on the Ballistic Properties of Shear Thickening Fluid (STF)-Kevlar Composites. AIP Conference Proceedings, 2004, , .	0.4	96
42	Effect of Hierarchical Cluster Formation on the Viscosity of Concentrated Monoclonal Antibody Formulations Studied by Neutron Scattering. Journal of Physical Chemistry B, 2016, 120, 278-291.	2.6	94
43	Rheology of region I flow in a lyotropic liquidâ€crystal polymer: The effects of defect texture. Journal of Rheology, 1994, 38, 1525-1547.	2.6	92
44	Rheological Properties and Small-Angle Neutron Scattering of a Shear Thickening, Nanoparticle Dispersion at High Shear Rates. Industrial & Engineering Chemistry Research, 2006, 45, 7015-7024.	3.7	92
45	One- and two-dimensional assembly of colloidal ellipsoids in ac electric fields. Physical Review E, 2009, 79, 050401.	2.1	89
46	Phase Behavior and Molecular Thermodynamics of Coacervation in Oppositely Charged Polyelectrolyte/Surfactant Systems: A Cationic Polymer JR 400 and Anionic Surfactant SDS Mixture. Langmuir, 2012, 28, 10348-10362.	3.5	89
47	Yarn Pull-Out as a Mechanism for Dissipating Ballistic Impact Energy in Kevlar® KM-2 Fabric. Textile Reseach Journal, 2004, 74, 939-948.	2.2	88
48	Hydrodynamic and Colloidal Interactions in Concentrated Charge-Stabilized Polymer Dispersions. Journal of Colloid and Interface Science, 2000, 225, 166-178.	9.4	86
49	Shear-Induced Phase Separation in Solutions of Wormlike Micelles. Langmuir, 2004, 20, 3564-3573.	3.5	86
50	Relating shear banding, structure, and phase behavior in wormlike micellar solutions. Soft Matter, 2009, 5, 3858.	2.7	86
51	Molecular Dynamics Simulation of Penetrant Diffusion in Amorphous Polypropylene:Â Diffusion Mechanisms and Simulation Size Effects. Macromolecules, 1999, 32, 5017-5028.	4.8	85
52	Molecular-dynamics simulations of two-dimensional materials at high strain rates. Physical Review A, 1992, 45, 8457-8470.	2.5	82
53	Electrolyte-Induced Aggregation of Acrylic Latex. 1. Dilute Particle Concentrations. Langmuir, 2001, 17, 3136-3147.	3.5	82
54	Nonequilibrium statistical mechanics of concentrated colloidal dispersions: Hard spheres in weak flows with many-body thermodynamic interactions. Physica A: Statistical Mechanics and Its Applications, 1989, 155, 475-518.	2.6	81

#	Article	IF	CITATIONS
55	Viscosity, Microstructure, and Interparticle Potential of AOT/H2O/n-Decane Inverse Microemulsions. Langmuir, 1995, 11, 1559-1570.	3.5	81
56	The microstructure and rheology of a model, thixotropic nanoparticle gel under steady shear and large amplitude oscillatory shear (LAOS). Journal of Rheology, 2014, 58, 1301-1328.	2.6	80
57	Molecular dynamics simulation study of the mechanisms of water diffusion in a hydrated, amorphous polyamide. Computational and Theoretical Polymer Science, 1999, 9, 301-306.	1.1	78
58	Self-Aggregation of Mixtures of Oppositely Charged Polyelectrolytes and Surfactants Studied by Rheology, Dynamic Light Scattering and Small-Angle Neutron Scattering. Langmuir, 2011, 27, 4386-4396.	3.5	78
59	Colloidal Stabilization by Adsorbed Gelatin. Langmuir, 2000, 16, 4100-4108.	3.5	77
60	Adsorption and Diffusion of Molecular Nitrogen in Single Wall Carbon Nanotubes. Langmuir, 2004, 20, 6268-6277.	3.5	77
61	Dynamic Bonds in Covalently Crosslinked Polymer Networks for Photoactivated Strengthening and Healing. Advanced Materials, 2015, 27, 8007-8010.	21.0	76
62	The use of a niobia-silica surface phase oxide in studying and varying metal-support interactions in supported nickel catalysts. Journal of Catalysis, 1985, 95, 260-270.	6.2	75
63	Microstructure and rheology relationships for shear thickening colloidal dispersions. Journal of Fluid Mechanics, 2015, 769, 242-276.	3.4	74
64	The rheology of highly concentrated PBLG solutions. Journal of Rheology, 1995, 39, 925-952.	2.6	73
65	Building Large Amorphous Polymer Structures:Â Atomistic Simulation of Glassy Polystyrene. Macromolecules, 1996, 29, 8497-8506.	4.8	73
66	Characterizing complex fluids with high frequency rheology using torsional resonators at multiple frequencies. Journal of Rheology, 2003, 47, 303-319.	2.6	73
67	Rheology, selfâ€diffusion, and microstructure of charged colloids under simple shear by massively parallel nonequilibrium Brownian dynamics. Journal of Chemical Physics, 1996, 104, 9234-9248.	3.0	72
68	Fast Dynamics of Semiflexible Chain Networks of Self-Assembled Peptides. Biomacromolecules, 2009, 10, 1374-1380.	5.4	72
69	The microstructure of polydisperse, charged colloidal suspensions by light and neutron scattering. Journal of Chemical Physics, 1991, 95, 494-508.	3.0	71
70	Microphase Separation of Hybrid Dendronâ^'Linear Diblock Copolymers into Ordered Structures. Macromolecules, 2002, 35, 8391-8399.	4.8	69
71	Spatially resolved small-angle neutron scattering in the 1-2 plane: A study of shear-induced phase-separating wormlike micelles. Physical Review E, 2006, 73, 020504.	2.1	69
72	Crystallization of alpha-lactose monohydrate in a drop-based microfluidic crystallizer. Chemical Engineering Science, 2007, 62, 4802-4810.	3.8	68

#	Article	IF	CITATIONS
73	Investigating the transient response of a shear thickening fluid using the split Hopkinson pressure bar technique. Rheologica Acta, 2010, 49, 879-890.	2.4	68
74	Microstructure and rheology of soft to rigid shear-thickening colloidal suspensions. Journal of Rheology, 2015, 59, 1377-1395.	2.6	68
75	A systematic study of equilibrium structure, thermodynamics, and rheology of aqueous CTAB/NaNO3 wormlike micelles. Journal of Colloid and Interface Science, 2010, 349, 1-12.	9.4	67
76	Intermediate range order and structure in colloidal dispersions with competing interactions. Journal of Chemical Physics, 2013, 139, 154904.	3.0	66
77	Ethane hydrogenolysis and carbon monoxide hydrogenation over niobia-supported nickel catalysts: A hierarchy to rank strong metal-support interaction. Journal of Catalysis, 1984, 86, 315-327.	6.2	65
78	SANS Analysis of the Molecular Order in Poly(γ-benzyll-glutamate)/Deuterated Dimethylformamide (PBLG/d-DMF) under Shear and during Relaxation. Macromolecules, 1996, 29, 2298-2301.	4.8	63
79	Microstructure and shear rheology of entangled wormlike micelles in solution. Journal of Rheology, 2009, 53, 441-458.	2.6	63
80	Influence of medium viscosity and adsorbed polymer on the reversible shear thickening transition in concentrated colloidal dispersions. Rheologica Acta, 2005, 44, 360-371.	2.4	62
81	Creating Nanoparticle Stability in Ionic Liquid [C ₄ mim][BF ₄] by Inducing Solvation Layering. ACS Nano, 2015, 9, 3243-3253.	14.6	62
82	The viscosity of bimodal and polydisperse suspensions of hard spheres in the dilute limit. Journal of Fluid Mechanics, 1994, 278, 267-287.	3.4	61
83	Generalized Doi–Ohta model for multiphase flow developed via generic. AICHE Journal, 1999, 45, 1169-1181.	3.6	61
84	The High-Frequency Shear Modulus of Colloidal Suspensions and the Effects of Hydrodynamic Interactions. Journal of Colloid and Interface Science, 1993, 161, 169-181.	9.4	60
85	Poly(ethylene oxide) (PEO) and Poly(vinyl pyrolidone) (PVP) Induce Different Changes in the Colloid Stability of Nanoparticles. Langmuir, 2010, 26, 13823-13830.	3.5	60
86	Clustering and Percolation in Suspensions of Carbon Black. Langmuir, 2017, 33, 12260-12266.	3.5	59
87	Short-Time Glassy Dynamics in Viscous Protein Solutions with Competing Interactions. Physical Review Letters, 2015, 115, 228302.	7.8	58
88	Instrumentation and measurement strategy for the NOAA SENEX aircraft campaign as part of the Southeast Atmosphere Study 2013. Atmospheric Measurement Techniques, 2016, 9, 3063-3093.	3.1	58
89	Molecular Simulation of Glassy Polystyrene:Â Size Effects on Gas Solubilities. Macromolecules, 1997, 30, 3058-3065.	4.8	57
90	Porous amorphous carbon models from periodic Gaussian chains of amorphous polymers. Carbon, 2005, 43, 3099-3111.	10.3	57

6

#	Article	IF	CITATIONS
91	Divergence in the low shear viscosity for Brownian hard-sphere dispersions: At random close packing or the glass transition?. Journal of Rheology, 2013, 57, 1555-1567.	2.6	57
92	Universal Binding Behavior for Ionic Alkyl Surfactants with Oppositely Charged Polyelectrolytes. Journal of the American Chemical Society, 2013, 135, 17547-17555.	13.7	57
93	Investigation of blood rheology under steady and unidirectional large amplitude oscillatory shear. Journal of Rheology, 2018, 62, 577-591.	2.6	57
94	Light scattering measurements of a hardâ€sphere suspension under shear. Physics of Fluids A, Fluid Dynamics, 1990, 2, 491-502.	1.6	56
95	Recent advances in blood rheology: a review. Soft Matter, 2021, 17, 10591-10613.	2.7	54
96	Preparation, reduction, and chemisorption behavior of niobia-supported nickel catalysts. Journal of Catalysis, 1983, 84, 85-94.	6.2	53
97	Linear viscoelastic master curves of neat and laponite-filled poly(ethylene oxide)–water solutions. Rheologica Acta, 2006, 45, 813-824.	2.4	53
98	The rheology and microstructure of branched micelles under shear. Journal of Rheology, 2015, 59, 1299-1328.	2.6	53
99	Rheo-SANS investigation of acicular-precipitated calcium carbonate colloidal suspensions through the shear thickening transition. Journal of Rheology, 2006, 50, 685-709.	2.6	52
100	Dynamical arrest in adhesive hard-sphere dispersions driven by rigidity percolation. Physical Review E, 2013, 88, 060302.	2.1	51
101	Measurements of human blood viscoelasticity and thixotropy under steady and transient shear and constitutive modeling thereof. Journal of Rheology, 2019, 63, 799-813.	2.6	51
102	Analysis of nonequilibrium structures of shearing colloidal suspensions. Journal of Chemical Physics, 1992, 97, 1473-1483.	3.0	50
103	Direct Observation of Flow-Concentration Coupling in a Shear-Banding Fluid. Physical Review Letters, 2010, 105, 084501.	7.8	50
104	Spontaneous Thermoreversible Formation of Cationic Vesicles in a Protic Ionic Liquid. Journal of the American Chemical Society, 2012, 134, 20728-20732.	13.7	50
105	Relationship between short-time self-diffusion and high-frequency viscosity in charge-stabilized dispersions. Physical Review E, 1998, 58, R4088-R4091.	2.1	48
106	Dynamics of Melting and Recrystallization in a Polymeric Micellar Crystal Subjected to Large Amplitude Oscillatory Shear Flow. Physical Review Letters, 2012, 108, 258301.	7.8	48
107	Influence of End Groups on Dendrimer Rheology and Conformation. Macromolecules, 2003, 36, 4619-4623.	4.8	47
108	Shear thickening in polymer stabilized colloidal dispersions. Journal of Rheology, 2005, 49, 1347-1360.	2.6	47

#	Article	IF	CITATIONS
109	Engineering enhanced cut and puncture resistance into the thermal micrometeoroid garment (TMG) using shear thickening fluid (STF)–ÂArmorâ"¢ absorber layers. Composites Science and Technology, 2016, 131, 61-66.	7.8	47
110	Neutron scattering in the biological sciences: progress and prospects. Acta Crystallographica Section D: Structural Biology, 2018, 74, 1129-1168.	2.3	47
111	In SituAnalysis of the Defect Texture in Liquid Crystal Polymer Solutions under Shear. Macromolecules, 1997, 30, 508-514.	4.8	46
112	Colloidal Charge Determination in Concentrated Liquid Dispersions Using Torsional Resonance Oscillation. Journal of Colloid and Interface Science, 1998, 202, 430-440.	9.4	46
113	Hydrodynamic shear thickening of particulate suspension under confinement. Journal of Non-Newtonian Fluid Mechanics, 2014, 213, 39-49.	2.4	46
114	Structure and rheology of hyperbranched and dendritic polymers. I. Modification and characterization of poly(propyleneimine) dendrimers with acetyl groups. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 857-873.	2.1	44
115	Triblock Copolymer Self-Assembly in Ionic Liquids: Effect of PEO Block Length on the Self-Assembly of PEO–PEO in Ethylammonium Nitrate. Macromolecules, 2014, 47, 7484-7495.	4.8	44
116	Photodirected Formation and Control of Wrinkles on a Thiol–ene Elastomer. ACS Macro Letters, 2013, 2, 474-477.	4.8	43
117	Gel Transition in Adhesive Hard-Sphere Colloidal Dispersions: The Role of Gravitational Effects. Physical Review Letters, 2013, 110, 208302.	7.8	43
118	Shear viscosity and structural scalings in model adhesive hard-sphere gels. Physical Review E, 2014, 89, 050302.	2.1	43
119	The dichroism and birefringence of a hardâ€sphere suspension under shear. Journal of Chemical Physics, 1988, 89, 1580-1587.	3.0	42
120	Structural investigations of poly(amido amine) dendrimers in methanol using molecular dynamics. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 3062-3077.	2.1	42
121	Radiohybridization PET imaging of KRAS G12D mRNA expression in human pancreas cancer xenografts with [64Cu]DO3A-peptide nucleic acid-peptide nanoparticles. Cancer Biology and Therapy, 2007, 6, 948-956.	3.4	42
122	Structure-property relationships of sheared carbon black suspensions determined by simultaneous rheological and neutron scattering measurements. Journal of Rheology, 2019, 63, 423-436.	2.6	42
123	Toward Rational Design of Protein Detergent Complexes: Determinants of Mixed Micelles That Are Critical for the InÂVitro Stabilization of a G-Protein Coupled Receptor. Biophysical Journal, 2011, 101, 1938-1948.	0.5	41
124	Water Nanocluster Formation in the Ionic Liquid 1-Butyl-3-methylimidazolium Tetrafluoroborate ([C ₄ mim][BF ₄])–D ₂ O Mixtures. Langmuir, 2016, 32, 5078-5084.	3.5	41
125	A correlation for the diameter of electrospun polymer nanofibers. AICHE Journal, 2007, 53, 51-55.	3.6	40
126	The Huggins Coefficient for the Square-Well Colloidal Fluid. Industrial & Engineering Chemistry Research, 1994, 33, 2391-2397.	3.7	39

#	Article	IF	CITATIONS
127	Structure and Extent of Adsorbed Gelatin on Acrylic Latex and Polystyrene Colloidal Particles. Journal of Colloid and Interface Science, 1998, 205, 131-140.	9.4	39
128	The Morphology and Composition of Cholesterol-Rich Micellar Nanostructures Determine Transmembrane Protein (GPCR) Activity. Biophysical Journal, 2011, 100, L11-L13.	0.5	39
129	Spatiotemporal stress and structure evolution in dynamically sheared polymer-like micellar solutions. Soft Matter, 2014, 10, 2889-2898.	2.7	39
130	The rheology and microstructure of an aging thermoreversible colloidal gel. Journal of Rheology, 2017, 61, 23-34.	2.6	39
131	Fast Dynamics of Wormlike Micellar Solutions. Langmuir, 2007, 23, 5267-5269.	3.5	38
132	The Role of Nanoscale Forces in Colloid Dispersion Rheology. MRS Bulletin, 2004, 29, 100-106.	3.5	37
133	Microstructural evolution of a model, shear-banding micellar solution during shear startup and cessation. Physical Review E, 2014, 89, 042301.	2.1	37
134	Multilamellar Vesicle Formation from a Planar Lamellar Phase under Shear Flow. Langmuir, 2014, 30, 8316-8325.	3.5	37
135	Formation of a Highly Ordered Colloidal Microstructure upon Flow Cessation from High Shear Rates. Physical Review Letters, 1996, 77, 2117-2120.	7.8	35
136	Influence of Polymer Motion, Topology and Simulation Size on Penetrant Diffusion in Amorphous, Glassy Polymers:Â Diffusion of Helium in Polypropylene. Macromolecules, 2001, 34, 6107-6116.	4.8	35
137	Colloidal diffusion and hydrodynamic screening near boundaries. Soft Matter, 2011, 7, 6844.	2.7	35
138	Structural Transitions of CTAB Micelles in a Protic Ionic Liquid. Langmuir, 2012, 28, 12722-12730.	3.5	35
139	Microstructure and rheology of polydisperse, charged suspensions. Journal of Chemical Physics, 1996, 104, 9249-9258.	3.0	34
140	An adaptive parallel tempering method for the dynamic dataâ€driven parameter estimation of nonlinear models. AICHE Journal, 2017, 63, 1937-1958.	3.6	34
141	Electrospinning of neat and laponite-filled aqueous poly(ethylene oxide) solutions. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 1608-1617.	2.1	33
142	Layering, melting, and recrystallization of a close-packed micellar crystal under steady and large-amplitude oscillatory shear flows. Journal of Rheology, 2015, 59, 793-820.	2.6	33
143	Structure-rheology relationship for a homogeneous colloidal gel under shear startup. Journal of Rheology, 2017, 61, 117-137.	2.6	33
144	High frequency rheology of hard sphere colloidal dispersions measured with a torsional resonator. Journal of Non-Newtonian Fluid Mechanics, 2002, 102, 149-156.	2.4	32

#	Article	IF	CITATIONS
145	On the importance of thermodynamic self-consistency for calculating clusterlike pair correlations in hard-core double Yukawa fluids. Journal of Chemical Physics, 2011, 134, 064904.	3.0	32
146	Rheology of cubic particles suspended in a Newtonian fluid. Soft Matter, 2016, 12, 4654-4665.	2.7	32
147	Microstructure of neat and SBS modified asphalt binder by small-angle neutron scattering. Fuel, 2019, 253, 1589-1596.	6.4	31
148	Micellar Morphology of Polysorbate 20 and 80 and Their Ester Fractions in Solution via Small-Angle Neutron Scattering. Journal of Pharmaceutical Sciences, 2020, 109, 1498-1508.	3.3	31
149	Rheo-optics. Current Opinion in Colloid and Interface Science, 1998, 3, 391-400.	7.4	30
150	Directed self-assembly of suspensions by large amplitude oscillatory shear flow. Journal of Rheology, 2009, 53, 575-588.	2.6	30
151	An experimental investigation into the kinematics of a concentrated hard-sphere colloidal suspension during Hopkinson bar evaluation at high stresses. Journal of Non-Newtonian Fluid Mechanics, 2010, 165, 1342-1350.	2.4	29
152	A constitutive equation for thixotropic suspensions with yield stress by coarseâ€graining a population balance model. AICHE Journal, 2017, 63, 517-531.	3.6	29
153	STAB RESISTANCE OF SHEAR THICKENING FLUID (STF)–KEVLAR COMPOSITES FOR BODY ARMOR APPLICATIONS. , 2006, , .		29
154	Rheology of non-Brownian particles suspended in concentrated colloidal dispersions at low particle Reynolds number. Journal of Rheology, 2016, 60, 47-59.	2.6	28
155	Thermoreversible Gels Composed of Colloidal Silica Rods with Short-Range Attractions. Langmuir, 2016, 32, 8424-8435.	3.5	28
156	Dynamic shear rheology and structure kinetics modeling of a thixotropic carbon black suspension. Rheologica Acta, 2017, 56, 811-824.	2.4	28
157	Fundamentals of aggregation in concentrated dispersions: Fiber-optic quasielastic light scattering and linear viscoelastic measurements. Faraday Discussions, 2003, 123, 369-383.	3.2	27
158	Temperature-Dependent Nanostructure of an End-Tethered Octadecane Brush in Tetradecane and Nanoparticle Phase Behavior. Langmuir, 2010, 26, 3003-3007.	3.5	27
159	Sponge-to-Lamellar Transition in a Double-Tail Cationic Surfactant/Protic Ionic Liquid System: Structural and Rheological Analysis. Journal of Physical Chemistry B, 2012, 116, 813-822.	2.6	27
160	Modeling the effects of polydispersity on the viscosity of noncolloidal hard sphere suspensions. Journal of Rheology, 2016, 60, 225-240.	2.6	27
161	Iono-Elastomer-Based Wearable Strain Sensor with Real-Time Thermomechanical Dual Response. ACS Applied Materials & Interfaces, 2018, 10, 32435-32443.	8.0	27
162	Effects of ex vivo aging and storage temperature on blood viscosity. Clinical Hemorheology and Microcirculation, 2018, 70, 155-172.	1.7	27

#	Article	IF	CITATIONS
163	Competitive Surface Activity of Monoclonal Antibodies and Nonionic Surfactants at the Air–Water Interface Determined by Interfacial Rheology and Neutron Reflectometry. Langmuir, 2020, 36, 7814-7823.	3.5	27
164	The rheology and microstructure of charged colloidal suspensions. Colloid and Polymer Science, 1991, 269, 295-319.	2.1	26
165	Effect of Gravity on Colloidal Deposition Studied by Atomic Force Microscopy. Journal of Colloid and Interface Science, 2001, 240, 9-16.	9.4	26
166	E-FiRST: Electric field responsive shear thickening fluids. Rheologica Acta, 2003, 42, 287-294.	2.4	26
167	The influence of weak attractive forces on the microstructure and rheology of colloidal dispersions. Journal of Rheology, 2005, 49, 475-499.	2.6	26
168	Calorimetric Study of the Adsorption of Poly(ethylene oxide) and Poly(vinyl pyrrolidone) onto Cationic Nanoparticles. Langmuir, 2010, 26, 6262-6267.	3.5	26
169	Surface Charge of 3-(Trimethoxysilyl) Propyl Methacrylate (TPM) Coated Stöber Silica Colloids by Zeta-Phase Analysis Light Scattering and Small Angle Neutron Scattering. Langmuir, 2000, 16, 10556-10558.	3.5	25
170	Superposition rheology. Physical Review E, 2001, 63, 021406.	2.1	25
171	Shear-induced phase separation (SIPS) with shear banding in solutions of cationic surfactant and salt. Journal of Rheology, 2011, 55, 1375-1397.	2.6	25
172	An improved method for analyzing isothermal titration calorimetry data from oppositely charged surfactant polyelectrolyte mixtures. Journal of Chemical Thermodynamics, 2014, 68, 48-52.	2.0	25
173	The medium amplitude oscillatory shear of semi-dilute colloidal dispersions. Part I: Linear response and normal stress differences. Journal of Rheology, 2014, 58, 307-337.	2.6	25
174	MMOD Puncture Resistance of EVA Suits with Shear Thickening Fluid (STF) – Armortm Absorber Layers. Procedia Engineering, 2015, 103, 97-104.	1.2	25
175	Validation of constitutive modeling of shear banding, threadlike wormlike micellar fluids. Journal of Rheology, 2016, 60, 983-999.	2.6	25
176	Synthetic control of the size, shape, and polydispersity of anisotropic silica colloids. Journal of Colloid and Interface Science, 2017, 501, 45-53.	9.4	25
177	Short-time dynamics of lysozyme solutions with competing short-range attraction and long-range repulsion: Experiment and theory. Journal of Chemical Physics, 2018, 148, 065101.	3.0	25
178	The role of liquid-crystalline polymer rheology on the evolving morphology of immiscible blends containing liquid-crystalline polymers. Journal of Rheology, 1999, 43, 521-549.	2.6	24
179	Spatially Resolved Concentration and Segmental Flow Alignment in a Shear-Banding Solution of Polymer-Like Micelles. ACS Macro Letters, 2014, 3, 276-280.	4.8	24
180	Thermodynamic properties and rheology of sterically stabilized colloidal dispersions. Rheologica Acta, 2000, 39, 483-494.	2.4	23

#	Article	IF	CITATIONS
181	Physiologically Based Pharmacokinetics of Molecular Imaging Nanoparticles for mRNA Detection Determined in Tumor-Bearing Mice. Oligonucleotides, 2010, 20, 117-125.	2.7	23
182	Two-Dimensional Directed Assembly of Dicolloids. Langmuir, 2013, 29, 75-81.	3.5	23
183	Understanding steady and dynamic shear banding in a model wormlike micellar solution. Journal of Rheology, 2016, 60, 1001-1017.	2.6	23
184	Self-Assembly of Pluronic F127 Diacrylate in Ethylammonium Nitrate: Structure, Rheology, and Ionic Conductivity before and after Photo-Cross-Linking. Macromolecules, 2016, 49, 5179-5189.	4.8	23
185	An optimized protocol for the analysis of time-resolved elastic scattering experiments. Soft Matter, 2016, 12, 2301-2308.	2.7	23
186	Experimental test of a frictional contact model for shear thickening in concentrated colloidal suspensions. Journal of Rheology, 2020, 64, 267-282.	2.6	23
187	Microstructure and rheology of shear-thickening colloidal suspensions with varying interparticle friction: Comparison of experiment with theory and simulation models. Physics of Fluids, 2021, 33, .	4.0	23
188	A Monte Carlo simulation study of the effect of carbon topology on nitrogen adsorption on graphite, a nanotube bundle, C60 fullerite, C168 schwarzite, and a nanoporous carbon. Physical Chemistry Chemical Physics, 2004, 6, 4440.	2.8	22
189	A critical examination of the decoupling approximation for small-angle scattering from hard ellipsoids of revolution. Journal of Applied Crystallography, 2016, 49, 1734-1739.	4.5	22
190	Non-ideal viscosity and excess molar volume of mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate ([C 4 mim][BF 4]) with water. Journal of Molecular Liquids, 2016, 223, 678-686.	4.9	22
191	Adsorption of polysorbate 20 and proteins on hydrophobic polystyrene surfaces studied by neutron reflectometry. Colloids and Surfaces B: Biointerfaces, 2018, 168, 94-102.	5.0	22
192	Comparison of small shear flow rate–small wave vector static structure factor data with theory. Journal of Chemical Physics, 1989, 90, 3250-3253.	3.0	21
193	Self-consistent solution for the generalized hydrodynamics model of suspension dynamics: Comparison of theory with rheological and optical measurements. Physical Review E, 1994, 49, 376-401.	2.1	21
194	Formation of Multilamellar Vesicles by Oscillatory Shear. Langmuir, 2003, 19, 8709-8714.	3.5	21
195	Nonlinear rheological behavior of bitumen under LAOS stress. Journal of Rheology, 2018, 62, 975-989.	2.6	21
196	Adsorption of non-ionic surfactant and monoclonal antibody on siliconized surface studied by neutron reflectometry. Journal of Colloid and Interface Science, 2021, 584, 429-438.	9.4	21
197	Comparison of lunar and Martian regolith simulant-based geopolymer cements formed by alkali-activation for in-situ resource utilization. Advances in Space Research, 2022, 69, 761-777.	2.6	21
198	Colloidal interactions mediated by end-adsorbing polymer-like micelles. Journal of Chemical Physics, 2011, 135, 084901.	3.0	20

#		Article	IF	CITATIONS
1	99	Ultrastretchable Iono-Elastomers with Mechanoelectrical Response. ACS Macro Letters, 2016, 5, 1332-1338.	4.8	20
2	00	Detecting Branching in Wormlike Micelles via Dynamic Scattering Methods. ACS Macro Letters, 2018, 7, 614-618.	4.8	20
2	01	Directed self-assembly of colloidal crystals by dielectrophoretic ordering observed with small angle neutron scattering (SANS). Soft Matter, 2010, 6, 5443.	2.7	19
2	02	Directed Self-Assembly of Colloidal Crystals by Dielectrophoretic Ordering. Langmuir, 2012, 28, 4123-4130.	3.5	19
2	03	Thermal rheology and microstructure of shear thickening suspensions of silica nanoparticles dispersed in the ionic liquid [C ₄ mim][BF ₄]. Journal of Rheology, 2017, 61, 525-535.	2.6	19
2	04	Control of Rheological Behaviour with Oppositely Charged Polyelectrolyte Surfactant Mixtures. Tenside, Surfactants, Detergents, 2011, 48, 488-494.	1.2	19
2	05	A rheological and morphological study of a copolyester liquid crystal/polypropylene blend system. Journal of Polymer Science, Part B: Polymer Physics, 1996, 34, 2433-2445.	2.1	18
2	06	Gelatin Adsorption at the Air/Water Interface As Investigated by X-ray Reflectivity. Langmuir, 1999, 15, 4685-4689.	3.5	18
2	07	Design of (Gdâ€DO3A) _{<i>n</i>} â€polydiamidopropanoylâ€peptide nucleic acidâ€ <scp>D</scp> (Cys‣erâ€Lys ys) magnetic resonance contrast agents. Biopolymers, 2008, 89, 1061-10	0 7 6.	18
2	08	Solvent isotope effect on the microstructure and rheology of cationic worm-like micelles near the isotropic-nematic transition. Soft Matter, 2011, 7, 10856.	2.7	18
2	09	Force-induced cleavage of a labile bond for enhanced mechanochemical crosslinking. Polymer Chemistry, 2017, 8, 6485-6489.	3.9	18
2	10	Direct measurements of the microstructural origin of shear-thinning in carbon black suspensions. Journal of Rheology, 2021, 65, 145.	2.6	18
2	11	Determination of the Texture Viscosity and Elasticity of a Nematic PBLG/d-DMF Solution through Magnetic Field Alignment. Macromolecules, 1994, 27, 5979-5986.	4.8	17
2	12	Accurate simulation of linear viscoelastic properties by variance reduction through the use of control variates. Journal of Rheology, 1997, 41, 757-768.	2.6	17
2	13	Correlation of the minor-phase orientation to the flow-induced morphological transitions in thermotropic liquid crystalline polymer/PBT blends. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 1769-1780.	2.1	17
2	14	Structure and rheology of hyperbranched and dendritic polymers. II. Effects of blending acetylated and hydroxy-terminated poly(propyleneimine) dendrimers with aqueous poly(ethylene oxide) solutions. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 874-882.	2.1	17
2	15	Measuring Material Microstructure Under Flow Using 1-2 Plane Flow-Small Angle Neutron Scattering. Journal of Visualized Experiments, 2014, , e51068.	0.3	17
2	16	On the macroscopic modelling of dilute emulsions under flow. Journal of Fluid Mechanics, 2017, 831, 433-473.	3.4	17

#	Article	IF	CITATIONS
217	Heteroflocculation of binary latex dispersions of similar chemistry but varying size. Journal of Colloid and Interface Science, 2003, 268, 380-393.	9.4	16
218	The shear viscosity of polyampholyte (gelatin) stabilized colloidal dispersions. Journal of Colloid and Interface Science, 2004, 280, 264-275.	9.4	16
219	A strain-controlled RheoSANS instrument for the measurement of the microstructural, electrical, and mechanical properties of soft materials. Review of Scientific Instruments, 2017, 88, 105115.	1.3	16
220	Activity and selectivity of a niobia (Nb2O5)-supported nickel catalyst in CO hydrogenation. Journal of the Chemical Society Chemical Communications, 1983, , 94.	2.0	15
221	Numerical simulations of eccentricity and end effects in falling ball rheometry. Journal of Rheology, 1989, 33, 1107-1128.	2.6	15
222	Structure of Isotropic Solutions of Rigid Macromolecules via Small-Angle Neutron Scattering: Poly(.gammabenzyl L-glutamate)/Deuterated Dimethylformamide. Macromolecules, 1995, 28, 5075-5081.	4.8	15
223	Polyampholyte Gelatin Adsorption to Colloidal Latex:  pH and Electrolyte Effects on Acrylic and Polystyrene Latices. Biomacromolecules, 2000, 1, 466-472.	5.4	15
224	Rheology of polyampholyte (gelatin)-stabilized colloidal dispersions: The tertiary electroviscous effect. Journal of Rheology, 2001, 45, 451-466.	2.6	15
225	Uptake, efflux, and mass transfer coefficient of fluorescent PAMAM dendrimers into pancreatic cancer cells. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 294-301.	2.6	15
226	The Use of Shear Thickening Nanocomposites in Impact Resistant Materials. Journal of Biomechanical Engineering, 2015, 137, 054504.	1.3	15
227	Planar channel flow of a discontinuous shear-thickening model fluid: Theory and simulation. Physics of Fluids, 2017, 29, .	4.0	15
228	Tensorial formulations for improved thixotropic viscoelastic modeling of human blood. Journal of Rheology, 2022, 66, 327-347.	2.6	15
229	The Smoluchowski equation for colloidal suspensions developed and analyzed through the GENERIC formalism. Journal of Non-Newtonian Fluid Mechanics, 2001, 96, 177-201.	2.4	14
230	Phenomenological modeling of the response of a dense colloidal suspension under dynamic squeezing flow. Journal of Non-Newtonian Fluid Mechanics, 2011, 166, 680-688.	2.4	14
231	Nanovesicle formation and microstructure in aqueous ditallowethylesterdimethylammonium chloride (DEEDMAC) solutions. Journal of Colloid and Interface Science, 2014, 429, 17-24.	9.4	14
232	Local Crystalline Structure in an Amorphous Protein Dense Phase. Biophysical Journal, 2015, 109, 1716-1723.	0.5	14
233	Modeling the viscosity of polydisperse suspensions: Improvements in prediction of limiting behavior. Physics of Fluids, 2016, 28, .	4.0	14
234	Structure-property relationships and state behavior of alkali-activated aluminosilicate gels. Cement and Concrete Research, 2022, 151, 106618.	11.0	14

#	Article	IF	CITATIONS
235	Transient Viscosity and Molecular Order of a Thermotropic Polyester LCP in Uniaxial Elongational Flow. Macromolecules, 1999, 32, 1159-1166.	4.8	13
236	Effects of Resin Architecture and Protein Size on Nanoscale Protein Distribution in Ion-Exchange Media. Langmuir, 2018, 34, 673-684.	3.5	13
237	Branching and alignment in reverse worm-like micelles studied with simultaneous dielectric spectroscopy and RheoSANS. Soft Matter, 2018, 14, 5344-5355.	2.7	13
238	Application of population balance-based thixotropic model to human blood. Journal of Non-Newtonian Fluid Mechanics, 2020, 281, 104294.	2.4	13
239	Development of an in situ rheological method to characterize fatty acid crystallization in complex fluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 388, 12-20.	4.7	12
240	Characterization of Protein–Excipient Microheterogeneity in Biopharmaceutical Solid-State Formulations by Confocal Fluorescence Microscopy. Molecular Pharmaceutics, 2017, 14, 546-553.	4.6	12
241	Dynamic properties of different liquid states in systems with competing interactions studied with lysozyme solutions. Soft Matter, 2018, 14, 8570-8579.	2.7	12
242	A comparative study of blood rheology across species. Soft Matter, 2021, 17, 4766-4774.	2.7	12
243	Characterization of lysozyme adsorption in cellulosic chromatographic materials using small-angle neutron scattering. Journal of Chromatography A, 2015, 1399, 45-52.	3.7	11
244	Normal lubrication force between spherical particles immersed in a shear-thickening fluid. Physics of Fluids, 2018, 30, 123102.	4.0	11
245	Rheology of Colloidal Glasses and Gels. , 2021, , 173-226.		11
246	Self-diffusion in dispersions of charged colloidal spheres by generalized hydrodynamics. Physica A: Statistical Mechanics and Its Applications, 1997, 235, 34-47.	2.6	10
247	Poly(propylene imine) dendrimers as plasticizers for polyvinyl chloride. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1970-1975.	2.1	10
248	Evidence of metal–support interaction for an Ni/TiO2–SiO2catalyst. Journal of the Chemical Society Chemical Communications, 1984, , 1274-1275.	2.0	9
249	Dielectric RheoSANS — Simultaneous Interrogation of Impedance, Rheology and Small Angle Neutron Scattering of Complex Fluids. Journal of Visualized Experiments, 2017, , .	0.3	9
250	Ultra-Stretchable Conductive Iono-Elastomer And Motion Strain Sensor System Developed Therefrom. Technology and Innovation, 2018, 19, 613-626.	0.2	9
251	Dynamic arrest of adhesive hard rod dispersions. Soft Matter, 2020, 16, 1279-1286.	2.7	9
252	Telescoping Fast Multipole Methods Using Chebyshev Economization. Journal of Computational Physics, 1995, 122, 317-322.	3.8	8

#	Article	IF	CITATIONS
253	Letter to the editor: Comment on "Effect of attractions on shear thickening in dense suspensions―[J. Rheology 48, 1321 (2004)]. Journal of Rheology, 2005, 49, 799-803.	2.6	8
254	Modeling the crystallization of proteins and small organic molecules in nanoliter drops. AICHE Journal, 2010, 56, 79-91.	3.6	8
255	Thixotropy. , 2011, , 228-251.		8
256	Influence of Surfactants on the Rheology and Stability of Crystallizing Fatty Acid Pastes. JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 273-283.	1.9	8
257	Mixed Ionic/Electronic Conducting Surface Layers Adsorbed on Colloidal Silica for Flow Battery Applications. ACS Applied Materials & amp; Interfaces, 2016, 8, 24089-24096.	8.0	8
258	In Situ Characterization of the Microstructural Evolution of Biopharmaceutical Solid-State Formulations with Implications for Protein Stability. Molecular Pharmaceutics, 2019, 16, 173-183.	4.6	8
259	Molecular engineering of thixotropic, sprayable fluids with yield stress using associating polysaccharides. Journal of Colloid and Interface Science, 2020, 580, 264-274.	9.4	8
260	Effects of Particle Hardness on Shear Thickening Colloidal Suspension Rheology. AIP Conference Proceedings, 2008, , .	0.4	7
261	The medium amplitude oscillatory shear of semidilute colloidal dispersions. Part II: Third harmonic stress contribution. Journal of Rheology, 2016, 60, 241-255.	2.6	7
262	Experimental investigation of the dielectric properties of soil under hydraulic loading. Measurement Science and Technology, 2017, 28, 044001.	2.6	7
263	On the macroscopic modeling of dilute emulsions under flow in the presence of particle inertia. Physics of Fluids, 2018, 30, .	4.0	7
264	Relating chemical composition, structure, and rheology in alkaliâ€activated aluminosilicate gels. Journal of the American Ceramic Society, 2021, 104, 572-583.	3.8	7
265	Lubricant Effects on Articular Cartilage Sliding Biomechanics Under Physiological Fluid Load Support. Tribology Letters, 2021, 69, 1.	2.6	7
266	The future of suspension rheophysics: comments on the 2008 workshop. Rheologica Acta, 2009, 48, 827-829.	2.4	6
267	EFFECTS OF INTERMOLECULAR INTERACTIONS AND MOLECULAR ORIENTATION ON THE FLUX BEHAVIOR OF XANTHAN GUM SOLUTIONS DURING ULTRAFILTRATION. Journal of Food Process Engineering, 2009, 32, 623-644.	2.9	6
268	Introduction to colloid science and rheology. , 2011, , 1-35.		6
269	Grand canonical Monte Carlo simulation of adsorption of nitrogen and oxygen in realistic nanoporous carbon models. AICHE Journal, 2011, 57, 1496-1505.	3.6	6
270	Dynamic infrared sample controlled (DISCO) temperature for the tumbler cellsÂfor ultra small angle neutron scatteringÂ(USANS). Journal of Neutron Research, 2017, 19, 23-26.	1.1	6

#	Article	IF	CITATIONS
271	Charge and Size Polydispersity Effects on the Scattering Properties and the High-Frequency Elasticity of Colloids. Materials Research Society Symposia Proceedings, 1989, 177, 219.	0.1	5
272	Thermodynamic self-consistency criterion in the mixed integral equation theory of liquid structure. Physical Review E, 1996, 53, 2968-2971.	2.1	5
273	UNIFAC-FV Applied to Dendritic Macromolecules in Solution:  Comment on "Vaporâ^'Liquid Equilibria for Dendritic-Polymer Solutions―(Lieu, J. G.; Liu, M.; Fréchet, J. M. J.; Prausnitz, J. M.J. Chem. Eng. Data1999,44,) T	j EIIQq1	1 0 <i>5</i> 784314 r
274	Phase behavior of hybrid dendron-linear copolymers and blends with linear homopolymer. Comptes Rendus Chimie, 2003, 6, 853-864.	0.5	5
275	Characterization of Cationic Polyelectrolytes Adsorption to an Anionic Emulsion via Zetaâ€Potential and Microcalorimetry. Journal of Surfactants and Detergents, 2014, 17, 655-667.	2.1	5
276	Self-Assembly of Block Copolymers in Ionic Liquids. ACS Symposium Series, 2017, , 83-142.	0.5	5
277	Comicellization of Binary PEO–PPO–PEO Triblock Copolymer Mixtures in Ethylammonium Nitrate. Macromolecules, 2018, 51, 1453-1461.	4.8	5
278	Surface Chemical Functionalization of Wrinkled Thiol–Ene Elastomers for Promoting Cellular Alignment. ACS Applied Bio Materials, 2020, 3, 3731-3740.	4.6	5
279	Structural and rheological aging in model attraction-driven glasses by Rheo-SANS. Soft Matter, 2021, 17, 924-935.	2.7	5
280	Preservative Induced Polysorbate 80 Micelle Aggregation. Journal of Pharmaceutical Sciences, 2021, 110, 2395-2404.	3.3	5
281	A Thermodynamically Consistent, Microscopically-Based, Model of the Rheology of Aggregating Particles Suspensions. Entropy, 2022, 24, 717.	2.2	5
282	Anomalous rheological aging of a model thermoreversible colloidal gel following a thermal quench. Journal of Chemical Physics, 2022, 157, .	3.0	5
283	Massively Parallel Molecular Dynamics Simulations of Two-dimensional Materials at High Strain Rates. Materials Research Society Symposia Proceedings, 1992, 291, 91.	0.1	4
284	Quantitative predictions of suspension rheology by nonequilibrium Brownian dynamics and hydrodynamic preaveraging. Journal of Rheology, 1997, 41, 893-899.	2.6	4
285	Indirect Fourier Transform and Model Fitting of Small Angle Neutron Scattering from Silica Nanoparticles. Particle and Particle Systems Characterization, 2010, 27, 89-99.	2.3	4
286	Comment on "Evaluation of Shear-Thickening-Fluid Kevlar for Large-Fragment-Containment Applications". Journal of Aircraft, 2012, 49, 671-673.	2.4	4
287	TDNMR characterization of a model crystallizing surfactant system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 406, 13-23.	4.7	4
288	An experimental study of multimodal glass suspension rheology to test and validate a polydisperse suspension viscosity model. Rheologica Acta, 2017, 56, 995-1006.	2.4	4

#	Article	IF	CITATIONS
289	Data-Driven Development of Predictive Models for Sustained Drug Release. Journal of Pharmaceutical Sciences, 2019, 108, 3582-3591.	3.3	4
290	On the macroscopic modeling of the rheology and Ostwald ripening of dilute stabilized emulsions. Physics of Fluids, 2019, 31, 021206.	4.0	4
291	One-step, in situ jamming point measurements by immobilization cell rheometry. Rheologica Acta, 2020, 59, 209-225.	2.4	4
292	Hemorheology. , 2021, , 316-351.		4
293	Microstructure of continuous shear thickening colloidal suspensions determined by rheo-VSANS and rheo-USANS. Soft Matter, 2022, 18, 4325-4337.	2.7	4
294	The birefringence of shearing colloidal suspensions. Journal of Chemical Physics, 1991, 94, 6931-6932.	3.0	3
295	Non-spherical particles. , 2011, , 155-179.		3
296	Short-time diffusivity of dicolloids. Physical Review E, 2014, 89, 062311.	2.1	3
297	Rapid and controlled photo-induced thiol–ene wrinkle formation via flowcoating. Materials Horizons, 2018, 5, 514-520.	12.2	3
298	Mechanisms of precipitate formation during the purification of an Fcâ€fusion protein. Biotechnology and Bioengineering, 2018, 115, 2489-2503.	3.3	3
299	Suspensions of Soft Colloidal Particles. , 2021, , 227-290.		3
300	Design of PLGA-Based Drug Delivery Systems Using a Physically-Based Sustained Release Model. Journal of Pharmaceutical Sciences, 2022, 111, 345-357.	3.3	3
301	A Direct Observation Video Method for Describing COVID-19 Transmission Factors on a Micro-Geographical Scale: Viral Transmission (VT)-Scan. International Journal of Environmental Research and Public Health, 2021, 18, 9329.	2.6	3
302	Massively parallel non-equilibrium Brownian Dynamics simulations for complex fluids: the rheology of Brownian suspensions. Computers and Chemical Engineering, 1995, 19, 693-718.	3.8	3
303	How colloidal dispersions relax under stress. Physics Magazine, 0, 1, .	0.1	2
304	Methods of Colloidal Simulation. , 2021, , 120-154.		2
305	Rheological Behavior for α-1,3-Glucan Derived from Enzymatic Polymerization of Sucrose. ACS Food Science & Technology, 2022, 2, 240-248.	2.7	2
306	Direct Observation of COVID-19 Prevention Behaviors and Physical Activity in Public Open Spaces. International Journal of Environmental Research and Public Health, 2022, 19, 1335.	2.6	2

#	Article	IF	CITATIONS
307	Aggregation Kinetics of Polysorbate 80/m-Cresol Solutions: A Small-Angle Neutron Scattering Study. Molecular Pharmaceutics, 2022, , .	4.6	2
308	Flux-based modeling of heat and mass transfer in multicomponent systems. Physics of Fluids, 2022, 34, .	4.0	2
309	A parallel algorithm for Lees-Edwards boundary conditions. Parallel Computing, 1996, 22, 895-901.	2.1	1
310	Hydrodynamic effects. , 2011, , 36-79.		1
311	Theory of Colloidal Suspension Structure, Dynamics, and Rheology. , 2021, , 44-119.		1
312	Introduction to Colloidal Suspension Rheology. , 2021, , 1-43.		1
313	Microstructure under Flow. , 2021, , 155-172.		1
314	Structure and rheology of hyperbranched and dendritic polymers. I. Modification and characterization of poly(propyleneimine) dendrimers with acetyl groups. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 857.	2.1	1
315	Nanocrystalline protein domains via salting-out. Acta Crystallographica Section F, Structural Biology Communications, 2021, 77, 412-419.	0.8	1
316	Rheological and Optical Properties of Shearing Colloidal Suspensions by Polarized Light Spectroscopy. Materials Research Society Symposia Proceedings, 1991, 248, 269.	0.1	0
317	Shear Thinning Properties of Dense Suspensions: Rheology and Flow Dichroism. Materials Research Society Symposia Proceedings, 1992, 289, 81.	0.1	Ο
318	Guest Editorial: Proceedings of the Boston Symposia on Experimental Techniques. Journal of Rheology, 1994, 38, 1069-1069.	2.6	0
319	Spatially-resolved microstructure in shear banding wormlike micellar solutions. AIP Conference Proceedings, 2008, , .	0.4	Ο
320	Brownian hard spheres. , 0, , 80-121.		0
321	Stable systems. , 0, , 122-154.		Ο
322	Colloidal attractions and flocculated dispersions. , 0, , 180-227.		0
323	Shear thickening. , 0, , 252-290.		0
324	The 8th American Conference on Neutron Scattering. Neutron News, 2016, 27, 4-10.	0.2	0

#	Article	IF	CITATIONS
325	Editorial Overview: Nanotechnology. Current Opinion in Chemical Engineering, 2017, 16, i-ii.	7.8	Ο
326	Waiting-time distributions of particle entrapments in clustered states generated by short-range attractive, long-range repulsive (SALR) interactions. Europhysics Letters, 2019, 126, 38002.	2.0	0
327	Understanding the Protection Mechanism of Non-Ionic Surfactants in mAb Formulations Using Neutron Scattering. Neutron News, 0, , 1-2.	0.2	Ο
328	Predictions for the Viscoelasticity of Dispersions of Charged, Brownian Spheres through Generalized Hydrodynamics. , 1992, , 634-636.		0
329	Rheokinetic modeling of N-A-S–H gel formation related to alkali-activated aluminosilicate materials. Rheologica Acta, 0, , .	2.4	0